Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan.
J Control Release. 2010 Apr 2;143(1):112-9. doi: 10.1016/j.jconrel.2009.12.014. Epub 2010 Jan 3.
Skeletal muscle is an interesting target for gene therapy. To achieve effective gene introduction in skeletal muscle, a hydrodynamic approach by intravenous injection of plasmid DNA (pDNA) with transient isolation of the limb has attracted attention. In this study, we demonstrated that polyplex nanomicelle, composed of poly(ethyleneglycol) (PEG)-block-polycation and pDNA, showed excellent capacity of gene introduction to skeletal muscle. The evaluation of luciferase expression in the muscle revealed that the nanomicelle provided higher and sustained profiles of transgene expression compared with naked pDNA. Real-time in vivo imaging using a video-rate confocal imaging system suggested that the nanomicelle showed tolerability in the intracellular environment, resulting in the slow but sustained transgene expression. The nanomicelle induced less TNFalpha induction in the muscle than naked pDNA, indicating the safety of nanomicelle-based gene delivery into the skeletal muscle. Moreover, the nanomicelle showed significant tumor growth suppression for almost a month by introducing a pDNA expressing a soluble form of vascular endothelial growth factor (VEGF) receptor-1 (sFlt-1) to skeletal muscle to obtain anti-angiogenic effect on tumor growth. This feature of sustained effect gives an important advantage of gene therapy, especially on the points of cost effectiveness and high compliance. These results suggest that the hydrodynamic gene introduction to skeletal muscle using polyplex nanomicelle system possesses the potential for effective gene therapy.
骨骼肌是基因治疗的一个有趣靶标。为了在骨骼肌中实现有效的基因导入,通过静脉注射质粒 DNA(pDNA)并短暂隔离肢体的流体动力学方法引起了关注。在这项研究中,我们证明了由聚乙二醇(PEG)-嵌段聚阳离子和 pDNA 组成的超分子纳米胶束具有将基因导入骨骼肌的优异能力。肌肉中荧光素酶表达的评估表明,与裸露的 pDNA 相比,纳米胶束提供了更高和更持续的转基因表达谱。使用视频速率共聚焦成像系统的实时体内成像表明,纳米胶束在细胞内环境中具有耐受性,导致缓慢但持续的转基因表达。纳米胶束在肌肉中引起的 TNFalpha 诱导少于裸露的 pDNA,表明纳米胶束介导的基因递送至骨骼肌是安全的。此外,纳米胶束通过将表达可溶性血管内皮生长因子(VEGF)受体-1(sFlt-1)的 pDNA 引入骨骼肌来抑制肿瘤生长,从而获得抗血管生成作用,几乎可以抑制肿瘤生长近一个月。这种持续作用的特征为基因治疗提供了一个重要的优势,特别是在成本效益和高顺应性方面。这些结果表明,使用超分子纳米胶束系统的骨骼肌流体动力学基因导入具有有效的基因治疗潜力。