Suppr超能文献

可生物降解的聚酯纳米颗粒疫苗以低剂量在小鼠体内递送自我扩增mRNA。

Biodegradable Polyester Nanoparticle Vaccines Deliver Self-Amplifying mRNA in Mice at Low Doses.

作者信息

Wilson David R, Tzeng Stephany Y, Rui Yuan, Neshat Sarah Y, Conge Marranne J, Luly Kathryn M, Wang Ellen, Firestone Jessica L, McAuliffe Josie, Maruggi Giulietta, Jalah Rashmi, Johnson Russell, Doloff Joshua C, Green Jordan J

机构信息

Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.

GSK Vaccines, Rockville, MD 20850, USA.

出版信息

Adv Ther (Weinh). 2023 May;6(5). doi: 10.1002/adtp.202200219. Epub 2023 Feb 16.

Abstract

Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due its self-adjuvating and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles have been successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window would benefit from further improvement. To investigate alternatives to lipid nanoparticles, we developed a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM and as assessed by measuring expression of SAM encoding reporter proteins. We evaluated the ability of these polymers to deliver SAM intramuscularly in mice, and identified a polymer-based formulation that yielded up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicited superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.

摘要

由于其自身佐剂化和节省剂量的特性,自扩增mRNA(SAM)的递送在传染病疫苗接种方面具有很高的潜力。然而,一个挑战是SAM易降解,并且需要SAM完全完整地到达细胞质溶胶以实现自我扩增。脂质纳米颗粒已以惊人的速度成功用于mRNA疫苗接种,但诸如冷藏、制造、递送效率和治疗窗口等方面仍需要进一步改进。为了研究脂质纳米颗粒的替代物,我们开发了一类超过200种的可生物降解的封端亲脂性聚(β-氨基酯)(PBAE),通过测量SAM编码报告蛋白的表达来评估,这些PBAE能够有效地递送SAM。我们评估了这些聚合物在小鼠肌肉内递送SAM的能力,并确定了一种基于聚合物的制剂,与注射裸SAM相比,该制剂在肌肉内(IM)产生的SAM表达高达37倍。使用相同的纳米颗粒制剂递送编码狂犬病病毒糖蛋白的SAM,与裸SAM递送相比,该疫苗引发了更高的免疫原性,在低RNA注射剂量下导致小鼠血清转化。这些可生物降解的纳米材料可能有助于开发用于传染病的下一代RNA疫苗。

相似文献

1
Biodegradable Polyester Nanoparticle Vaccines Deliver Self-Amplifying mRNA in Mice at Low Doses.
Adv Ther (Weinh). 2023 May;6(5). doi: 10.1002/adtp.202200219. Epub 2023 Feb 16.
2
Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: The impact of cationic lipid selection.
J Control Release. 2020 Sep 10;325:370-379. doi: 10.1016/j.jconrel.2020.06.027. Epub 2020 Jul 1.
3
The role of nanoparticle format and route of administration on self-amplifying mRNA vaccine potency.
J Control Release. 2022 Feb;342:388-399. doi: 10.1016/j.jconrel.2021.12.008. Epub 2021 Dec 10.
4
Morphological Characterization of Self-Amplifying mRNA Lipid Nanoparticles.
ACS Nano. 2024 Jan 16;18(2):1464-1476. doi: 10.1021/acsnano.3c08014. Epub 2024 Jan 4.
5
Nonclinical Safety Assessment of Lipid Nanoparticle-and Emulsion-Based Self-Amplifying mRNA Vaccines in Rats.
Int J Toxicol. 2023 Jan-Feb;42(1):37-49. doi: 10.1177/10915818221138781. Epub 2022 Dec 6.
7
Nonclinical safety assessment of repeated administration and biodistribution of a novel rabies self-amplifying mRNA vaccine in rats.
Regul Toxicol Pharmacol. 2020 Jun;113:104648. doi: 10.1016/j.yrtph.2020.104648. Epub 2020 Mar 30.
8
Immunogenicity and protective efficacy induced by self-amplifying mRNA vaccines encoding bacterial antigens.
Vaccine. 2017 Jan 5;35(2):361-368. doi: 10.1016/j.vaccine.2016.11.040. Epub 2016 Dec 7.
9
Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines.
J Control Release. 2021 Oct 10;338:201-210. doi: 10.1016/j.jconrel.2021.08.029. Epub 2021 Aug 18.
10
Mannosylation of LNP Results in Improved Potency for Self-Amplifying RNA (SAM) Vaccines.
ACS Infect Dis. 2019 Sep 13;5(9):1546-1558. doi: 10.1021/acsinfecdis.9b00084. Epub 2019 Jul 23.

引用本文的文献

1
Revolutionizing mRNA Vaccines Through Innovative Formulation and Delivery Strategies.
Biomolecules. 2025 Mar 1;15(3):359. doi: 10.3390/biom15030359.
3
Charge neutralized poly(β-amino ester) polyplex nanoparticles for delivery of self-amplifying RNA.
Nanoscale Adv. 2024 Jan 24;6(5):1409-1422. doi: 10.1039/d3na00794d. eCollection 2024 Feb 27.

本文引用的文献

1
A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models.
Mol Ther. 2022 May 4;30(5):1897-1912. doi: 10.1016/j.ymthe.2022.01.001. Epub 2022 Jan 3.
3
Size-Controlled and Shelf-Stable DNA Particles for Production of Lentiviral Vectors.
Nano Lett. 2021 Jul 14;21(13):5697-5705. doi: 10.1021/acs.nanolett.1c01421. Epub 2021 Jul 6.
4
Poly(beta-amino ester) nanoparticles enable tumor-specific TRAIL secretion and a bystander effect to treat liver cancer.
Mol Ther Oncolytics. 2021 Apr 16;21:377-388. doi: 10.1016/j.omto.2021.04.004. eCollection 2021 Jun 25.
5
Editorial: mRNA Vaccines and Future Epidemic, Pandemic, and Endemic Zoonotic Virus Infections.
Med Sci Monit. 2021 May 4;27:e932915. doi: 10.12659/MSM.932915.
7
mRNA vaccine for cancer immunotherapy.
Mol Cancer. 2021 Feb 25;20(1):41. doi: 10.1186/s12943-021-01335-5.
8
An Update on Self-Amplifying mRNA Vaccine Development.
Vaccines (Basel). 2021 Jan 28;9(2):97. doi: 10.3390/vaccines9020097.
9
Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine.
N Engl J Med. 2020 Dec 31;383(27):2603-2615. doi: 10.1056/NEJMoa2034577. Epub 2020 Dec 10.
10
The effects of PEGylation on LNP based mRNA delivery to the eye.
PLoS One. 2020 Oct 29;15(10):e0241006. doi: 10.1371/journal.pone.0241006. eCollection 2020.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验