Wilson David R, Tzeng Stephany Y, Rui Yuan, Neshat Sarah Y, Conge Marranne J, Luly Kathryn M, Wang Ellen, Firestone Jessica L, McAuliffe Josie, Maruggi Giulietta, Jalah Rashmi, Johnson Russell, Doloff Joshua C, Green Jordan J
Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
GSK Vaccines, Rockville, MD 20850, USA.
Adv Ther (Weinh). 2023 May;6(5). doi: 10.1002/adtp.202200219. Epub 2023 Feb 16.
Delivery of self-amplifying mRNA (SAM) has high potential for infectious disease vaccination due its self-adjuvating and dose-sparing properties. Yet a challenge is the susceptibility of SAM to degradation and the need for SAM to reach the cytosol fully intact to enable self-amplification. Lipid nanoparticles have been successfully deployed at incredible speed for mRNA vaccination, but aspects such as cold storage, manufacturing, efficiency of delivery, and the therapeutic window would benefit from further improvement. To investigate alternatives to lipid nanoparticles, we developed a class of >200 biodegradable end-capped lipophilic poly(beta-amino ester)s (PBAEs) that enable efficient delivery of SAM and as assessed by measuring expression of SAM encoding reporter proteins. We evaluated the ability of these polymers to deliver SAM intramuscularly in mice, and identified a polymer-based formulation that yielded up to 37-fold higher intramuscular (IM) expression of SAM compared to injected naked SAM. Using the same nanoparticle formulation to deliver a SAM encoding rabies virus glycoprotein, the vaccine elicited superior immunogenicity compared to naked SAM delivery, leading to seroconversion in mice at low RNA injection doses. These biodegradable nanomaterials may be useful in the development of next-generation RNA vaccines for infectious diseases.
由于其自身佐剂化和节省剂量的特性,自扩增mRNA(SAM)的递送在传染病疫苗接种方面具有很高的潜力。然而,一个挑战是SAM易降解,并且需要SAM完全完整地到达细胞质溶胶以实现自我扩增。脂质纳米颗粒已以惊人的速度成功用于mRNA疫苗接种,但诸如冷藏、制造、递送效率和治疗窗口等方面仍需要进一步改进。为了研究脂质纳米颗粒的替代物,我们开发了一类超过200种的可生物降解的封端亲脂性聚(β-氨基酯)(PBAE),通过测量SAM编码报告蛋白的表达来评估,这些PBAE能够有效地递送SAM。我们评估了这些聚合物在小鼠肌肉内递送SAM的能力,并确定了一种基于聚合物的制剂,与注射裸SAM相比,该制剂在肌肉内(IM)产生的SAM表达高达37倍。使用相同的纳米颗粒制剂递送编码狂犬病病毒糖蛋白的SAM,与裸SAM递送相比,该疫苗引发了更高的免疫原性,在低RNA注射剂量下导致小鼠血清转化。这些可生物降解的纳米材料可能有助于开发用于传染病的下一代RNA疫苗。