Suppr超能文献

β-折叠晶体的酶降解机制。

Mechanism of enzymatic degradation of beta-sheet crystals.

机构信息

Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.

出版信息

Biomaterials. 2010 Apr;31(10):2926-33. doi: 10.1016/j.biomaterials.2009.12.026. Epub 2009 Dec 30.

Abstract

The anti-parallel beta pleated sheet is a fundamental secondary structure in proteins and a major component in silk fibers generated by silkworms and spiders, with a key role to stabilize these proteins via physical cross-links. Importantly, these beta-sheets are fully degradable and nontoxic structures in biology, in contrast for example to beta-amyloid structures formed in disease states. Thus, insight into mechanism of enzymatic degradation would be instructive as a route to elucidating differences among these stable yet different structural features in biological systems. We report on the mechanism of enzymatic degradation of anti-parallel beta pleated sheets with Bombyx mori silk structures, leading to fibrils and subsequently to nanofilaments (2nm thickness and 160nm length). These nanofilaments play a role as nucleators of the crystalline regions, an important feature of the system that can be exploited to design silk-based biomaterials with predictable biodegradability and mechanical properties. The potential toxicity of degradation products from these proteolytic enzymes was also assessed in vitro and no cell toxicity found in vitro for the protease found in vivo in the human body. The degradation mechanism of beta-sheet silk crystals provides additional insight into the significant differences in biological impact between the anti-parallel beta-sheet silk biomaterials reported in this work vs. amyloid structures in disease states, adding to prior descriptions of chemical and structural differences that are more extensively documented.

摘要

反平行β折叠片是蛋白质的基本二级结构,也是家蚕和蜘蛛产生的丝纤维的主要成分,通过物理交联稳定这些蛋白质。重要的是,与疾病状态下形成的β-淀粉样结构等相比,这些β-折叠片在生物学中是完全可降解且无毒的结构。因此,深入了解酶促降解的机制将有助于阐明生物系统中这些稳定但不同结构特征之间的差异。我们报告了丝素结构中反平行β折叠片的酶促降解机制,导致纤维和随后的纳米纤维(2nm 厚度和 160nm 长度)。这些纳米纤维作为结晶区的成核剂发挥作用,这是该系统的一个重要特征,可以用来设计具有可预测生物降解性和机械性能的基于丝素的生物材料。还评估了这些蛋白水解酶的降解产物的潜在毒性,并且在体内发现的蛋白酶在体外没有发现细胞毒性。β-片层丝晶的降解机制进一步深入了解了本工作中报道的反平行β-片层丝生物材料与疾病状态下的β-淀粉样结构之间在生物学影响方面的显著差异,补充了先前更广泛记录的化学和结构差异的描述。

相似文献

1
Mechanism of enzymatic degradation of beta-sheet crystals.β-折叠晶体的酶降解机制。
Biomaterials. 2010 Apr;31(10):2926-33. doi: 10.1016/j.biomaterials.2009.12.026. Epub 2009 Dec 30.
2
Biodegradation of silk biomaterials.丝生物材料的生物降解。
Int J Mol Sci. 2009 Mar 31;10(4):1514-1524. doi: 10.3390/ijms10041514.
4
Silk Spinning in Silkworms and Spiders.蚕与蜘蛛的吐丝
Int J Mol Sci. 2016 Aug 9;17(8):1290. doi: 10.3390/ijms17081290.
10
Enzymatic Degradation of Silk Materials: A Review.丝材料的酶降解:综述。
Biomacromolecules. 2020 May 11;21(5):1678-1686. doi: 10.1021/acs.biomac.0c00090. Epub 2020 Feb 19.

引用本文的文献

1
Beyond natural silk: Bioengineered silk fibroin for bone regeneration.超越天然蚕丝:用于骨再生的生物工程丝素蛋白
Mater Today Bio. 2025 Jun 23;33:102014. doi: 10.1016/j.mtbio.2025.102014. eCollection 2025 Aug.
8
Tuning the Biodegradation Rate of Silk Materials via Embedded Enzymes.通过嵌入酶来调节丝质材料的生物降解速率。
ACS Biomater Sci Eng. 2024 Apr 8;10(4):2607-2615. doi: 10.1021/acsbiomaterials.3c01758. Epub 2024 Mar 13.
9
Silk fibroin-based inks for 3D printing using a double crosslinking process.采用双重交联工艺的用于3D打印的丝素蛋白基墨水。
Bioact Mater. 2024 Jan 25;35:122-134. doi: 10.1016/j.bioactmat.2024.01.015. eCollection 2024 May.

本文引用的文献

1
In vivo degradation of three-dimensional silk fibroin scaffolds.三维丝素蛋白支架的体内降解
Biomaterials. 2008 Aug-Sep;29(24-25):3415-28. doi: 10.1016/j.biomaterials.2008.05.002. Epub 2008 May 27.
5
A toxic monomeric conformer of the polyglutamine protein.多聚谷氨酰胺蛋白的一种有毒单体构象异构体。
Nat Struct Mol Biol. 2007 Apr;14(4):332-40. doi: 10.1038/nsmb1215. Epub 2007 Mar 18.
6
Spider silk and amyloid fibrils: a structural comparison.蜘蛛丝与淀粉样纤维:结构比较
Macromol Biosci. 2007 Feb 12;7(2):183-8. doi: 10.1002/mabi.200600201.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验