Suppr超能文献

富含稳定β折叠的丝蛋白碳化形成类石墨热解蛋白。

Carbonization of a stable β-sheet-rich silk protein into a pseudographitic pyroprotein.

作者信息

Cho Se Youn, Yun Young Soo, Lee Sungho, Jang Dawon, Park Kyu-Young, Kim Jae Kyung, Kim Byung Hoon, Kang Kisuk, Kaplan David L, Jin Hyoung-Joon

机构信息

Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Korea.

1] Carbon Convergence Materials Research Center, Korea Institute of Science and Technology, San 101 Enha-ri, Bongdong-eup, Wanju-gun 565-905, Korea [2] Department of Nano Material Engineering, Korea University of Science and Technology, 217 Gajeong-ro, Yusung-gu, Daejeon 305-350, Korea.

出版信息

Nat Commun. 2015 May 20;6:7145. doi: 10.1038/ncomms8145.

Abstract

Silk proteins are of great interest to the scientific community owing to their unique mechanical properties and interesting biological functionality. In addition, the silk proteins are not burned out following heating, rather they are transformed into a carbonaceous solid, pyroprotein; several studies have identified potential carbon precursors for state-of-the-art technologies. However, no mechanism for the carbonization of proteins has yet been reported. Here we examine the structural and chemical changes of silk proteins systematically at temperatures above the onset of thermal degradation. We find that the β-sheet structure is transformed into an sp(2)-hybridized carbon hexagonal structure by simple heating to 350 °C. The pseudographitic crystalline layers grew to form highly ordered graphitic structures following further heating to 2,800 °C. Our results provide a mechanism for the thermal transition of the protein and demonstrate a potential strategy for designing pyroproteins using a clean system with a catalyst-free aqueous wet process for in vivo applications.

摘要

由于其独特的机械性能和有趣的生物功能,丝蛋白引起了科学界的极大兴趣。此外,丝蛋白在加热后不会被烧掉,而是会转化为一种含碳固体——焦蛋白;多项研究已经确定了用于先进技术的潜在碳前体。然而,尚未有关于蛋白质碳化机制的报道。在这里,我们系统地研究了丝蛋白在高于热降解起始温度的温度下的结构和化学变化。我们发现,通过简单加热至350°C,β-折叠结构会转变为sp(2)杂化的碳六边形结构。进一步加热至2800°C后,准石墨晶体层生长形成高度有序的石墨结构。我们的结果提供了蛋白质热转变的机制,并展示了一种潜在策略,即使用无催化剂的水性湿法清洁系统设计用于体内应用的焦蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/615b/4455128/612d8e8212a2/ncomms8145-f1.jpg

相似文献

3
Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films.
Biomacromolecules. 2005 Nov-Dec;6(6):3328-33. doi: 10.1021/bm0503524.
4
Structure and biodegradation mechanism of milled Bombyx mori silk particles.
Biomacromolecules. 2012 Aug 13;13(8):2503-12. doi: 10.1021/bm300736m. Epub 2012 Jul 12.
5
Silk I and Silk II studied by fast scanning calorimetry.
Acta Biomater. 2017 Jun;55:323-332. doi: 10.1016/j.actbio.2017.04.001. Epub 2017 Apr 5.
6
Reversible hydrogel-solution system of silk with high beta-sheet content.
Biomacromolecules. 2014 Aug 11;15(8):3044-51. doi: 10.1021/bm500662z. Epub 2014 Jul 24.
7
Beating the heat--fast scanning melts silk beta sheet crystals.
Sci Rep. 2013;3:1130. doi: 10.1038/srep01130. Epub 2013 Jan 24.
10
Preparation of semi-interpenetrating polymer networks composed of silk fibroin and poloxamer macromer.
Int J Biol Macromol. 2004 Aug;34(4):263-70. doi: 10.1016/j.ijbiomac.2004.06.002.

引用本文的文献

4
5
Silk-based conductive materials for smart biointerfaces.
Smart Med. 2023 Apr 17;2(2):e20230004. doi: 10.1002/SMMD.20230004. eCollection 2023 May.
6
Flat-Silk-Cocoon-Based Wearable Flexible Piezoresistive Sensor and Its Performance.
Polymers (Basel). 2024 Jan 22;16(2):295. doi: 10.3390/polym16020295.
7
Robust, self-adhesive and anti-bacterial silk-based LIG electrodes for electrophysiological monitoring.
RSC Adv. 2023 Oct 30;13(45):31704-31719. doi: 10.1039/d3ra05730e. eCollection 2023 Oct 26.
8
Deep eutectic solvent-assisted fabrication of bioinspired 3D carbon-calcium phosphate scaffolds for bone tissue engineering.
RSC Adv. 2023 Jul 20;13(32):21971-21981. doi: 10.1039/d3ra02356g. eCollection 2023 Jul 19.
9
Silk and its composites for humidity and gas sensing applications.
Front Chem. 2023 Mar 20;11:1141259. doi: 10.3389/fchem.2023.1141259. eCollection 2023.
10
Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications.
Adv Sci (Weinh). 2023 Jun;10(16):e2205557. doi: 10.1002/advs.202205557. Epub 2023 Mar 29.

本文引用的文献

1
3
All-water-based electron-beam lithography using silk as a resist.
Nat Nanotechnol. 2014 Apr;9(4):306-10. doi: 10.1038/nnano.2014.47. Epub 2014 Mar 23.
4
Self-propagation of pathogenic protein aggregates in neurodegenerative diseases.
Nature. 2013 Sep 5;501(7465):45-51. doi: 10.1038/nature12481.
5
Microporous carbon nanoplates from regenerated silk proteins for supercapacitors.
Adv Mater. 2013 Apr 11;25(14):1993-8. doi: 10.1002/adma.201204692. Epub 2013 Feb 25.
7
A physically transient form of silicon electronics.
Science. 2012 Sep 28;337(6102):1640-4. doi: 10.1126/science.1226325.
8
The amyloid state of proteins in human diseases.
Cell. 2012 Mar 16;148(6):1188-203. doi: 10.1016/j.cell.2012.02.022.
9
Diepoxide-triggered conformational transition of silk fibroin: formation of hydrogels.
Biomacromolecules. 2012 Apr 9;13(4):1122-8. doi: 10.1021/bm300006r. Epub 2012 Mar 6.
10
Mechanisms and control of silk-based electrospinning.
Biomacromolecules. 2012 Mar 12;13(3):798-804. doi: 10.1021/bm201719s. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验