Suppr超能文献

在 21.1T 下进行初始的体内啮齿动物钠和质子磁共振成像。

Initial in vivo rodent sodium and proton MR imaging at 21.1 T.

机构信息

National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310-4005, USA.

出版信息

Magn Reson Imaging. 2010 Apr;28(3):400-7. doi: 10.1016/j.mri.2009.10.002. Epub 2010 Jan 4.

Abstract

The first in vivo sodium and proton magnetic resonance (MR) images and localized spectra of rodents were attained using the wide bore (105 mm) high resolution 21.1-T magnet, built and operated at the National High Magnetic Field Laboratory (Tallahassee, FL, USA). Head images of normal mice (C57BL/6J) and Fisher rats (approximately 250 g) were acquired with custom designed radiofrequency probes at frequencies of 237/900 MHz for sodium and proton, respectively. Sodium MR imaging resolutions of approximately 0.125 microl for mouse and rat heads were achieved by using a 3D back-projection pulse sequence. A gain in SNR of approximately 3 for sodium and approximately 2 times for proton were found relative to corresponding MR images acquired at 9.4 T. 3D Fast Low Angle Shot (FLASH) proton mouse images (50x50x50 microm(3)) were acquired in 90 min and corresponding rat images (100x100x100 microm(3)) within a total time of 120 min. Both in vivo large rodent MR imaging and localized spectroscopy at the extremely high field of 21.1 T are feasible and demonstrate improved resolution and sensitivity valuable for structural and functional brain analysis.

摘要

利用在国家高磁场实验室(美国佛罗里达州塔拉哈西)建造和运行的宽孔径(105 毫米)高分辨率 21.1-T 磁体,首次获得了啮齿动物的体内钠和质子磁共振(MR)图像和局域谱。使用专门设计的射频探头,在 237/900 MHz 的频率下分别对正常小鼠(C57BL/6J)和费舍尔大鼠(约 250 克)的头部进行成像。通过使用三维后投影脉冲序列,实现了大约 0.125 微米的小鼠和大鼠头部的钠磁共振成像分辨率。与在 9.4 T 处获得的相应磁共振图像相比,钠的 SNR 增益约为 3,质子的 SNR 增益约为 2 倍。在 90 分钟内获得了三维快速低角激发(FLASH)质子小鼠图像(50x50x50 微米),在 120 分钟内获得了相应的大鼠图像(100x100x100 微米)。在 21.1 T 的极高场中进行体内大型啮齿动物磁共振成像和局域光谱学是可行的,并证明了改进的分辨率和灵敏度对于结构和功能脑分析非常有价值。

相似文献

1
Initial in vivo rodent sodium and proton MR imaging at 21.1 T.
Magn Reson Imaging. 2010 Apr;28(3):400-7. doi: 10.1016/j.mri.2009.10.002. Epub 2010 Jan 4.
2
Quantitative sodium MRI of the mouse prostate.
Magn Reson Med. 2010 Mar;63(3):822-7. doi: 10.1002/mrm.22196.
3
Sodium MRI using a density-adapted 3D radial acquisition technique.
Magn Reson Med. 2009 Dec;62(6):1565-73. doi: 10.1002/mrm.22157.
4
In vivo proton magnetic resonance spectroscopic imaging of the healthy human brain at 9.4 T: initial experience.
MAGMA. 2015 Jun;28(3):239-49. doi: 10.1007/s10334-014-0460-5. Epub 2014 Sep 24.
5
Part 1: Dual-tuned proton/sodium magnetic resonance imaging of the lumbar spine in a rabbit model.
Spine (Phila Pa 1976). 2012 Aug 15;37(18):E1106-12. doi: 10.1097/BRS.0b013e318259ee98.
6
Feasibility of 39-potassium MR imaging of a human brain at 9.4 Tesla.
Magn Reson Med. 2014 May;71(5):1819-25. doi: 10.1002/mrm.24821. Epub 2013 Jun 24.
7
Multichannel transceiver dual-tuned RF coil for proton/sodium MR imaging of knee cartilage at 3 T.
Magn Reson Imaging. 2012 May;30(4):562-71. doi: 10.1016/j.mri.2011.12.011. Epub 2012 Jan 30.
8
Sodium 3D COncentration MApping (COMA 3D) using (23)Na and proton MRI.
J Magn Reson. 2014 Oct;247:88-95. doi: 10.1016/j.jmr.2014.08.017. Epub 2014 Sep 9.
9
Rapid and robust pulmonary proton ZTE imaging in the mouse.
NMR Biomed. 2014 Sep;27(9):1129-34. doi: 10.1002/nbm.3161. Epub 2014 Jul 26.
10
Sodium imaging of human brain at 7 T with 15-channel array coil.
Magn Reson Med. 2012 Dec;68(6):1807-14. doi: 10.1002/mrm.24192. Epub 2012 Feb 29.

引用本文的文献

1
Fabrication of a 25.2 T NMR magnet for an extreme condition user facility in China.
Natl Sci Rev. 2024 May 10;11(7):nwae165. doi: 10.1093/nsr/nwae165. eCollection 2024 Jul.
2
Effects of 16.8-22.0 T high static magnetic fields on the development of zebrafish in early fertilization.
Eur Radiol. 2024 Nov;34(11):7211-7221. doi: 10.1007/s00330-024-10819-z. Epub 2024 Jun 6.
3
Magnetic Resonance Imaging in Tauopathy Animal Models.
Front Aging Neurosci. 2022 Jan 25;13:791679. doi: 10.3389/fnagi.2021.791679. eCollection 2021.
4
High-resolution magnetic resonance and mass spectrometry imaging of the human larynx.
J Anat. 2021 Sep;239(3):545-556. doi: 10.1111/joa.13451. Epub 2021 May 25.
5
6
Functional Imaging Using Fluorine (F) MR Methods: Basic Concepts.
Methods Mol Biol. 2021;2216:279-299. doi: 10.1007/978-1-0716-0978-1_17.
7
Hardware Considerations for Preclinical Magnetic Resonance of the Kidney.
Methods Mol Biol. 2021;2216:131-155. doi: 10.1007/978-1-0716-0978-1_8.
9
Excitation and RF Field Control of a Human-Size 10.5-T MRI System.
IEEE Trans Microw Theory Tech. 2019 Mar;67(3):1184-1196. doi: 10.1109/TMTT.2018.2884405. Epub 2018 Dec 14.
10
Aggregation of human mesenchymal stem cells enhances survival and efficacy in stroke treatment.
Cytotherapy. 2019 Oct;21(10):1033-1048. doi: 10.1016/j.jcyt.2019.04.055. Epub 2019 Sep 17.

本文引用的文献

1
The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976.
J Magn Reson. 2011 Dec;213(2):329-43. doi: 10.1016/j.jmr.2011.09.018.
2
Non-invasive quantification of brain glycogen absolute concentration.
J Neurochem. 2008 Dec;107(5):1414-23. doi: 10.1111/j.1471-4159.2008.05717.x.
4
1H NMR spectroscopy of rat brain in vivo at 14.1Tesla: improvements in quantification of the neurochemical profile.
J Magn Reson. 2008 Oct;194(2):163-8. doi: 10.1016/j.jmr.2008.06.019. Epub 2008 Jun 28.
5
Magnetic resonance imaging of neural circuits.
Nat Clin Pract Cardiovasc Med. 2008 Aug;5 Suppl 2(Suppl 2):S71-8. doi: 10.1038/ncpcardio1248.
6
MR microimaging of amyloid plaques in Alzheimer's disease transgenic mice.
Eur J Nucl Med Mol Imaging. 2008 Mar;35 Suppl 1:S82-8. doi: 10.1007/s00259-007-0706-9.
7
Rats avoid high magnetic fields: dependence on an intact vestibular system.
Physiol Behav. 2007 Nov 23;92(4):741-7. doi: 10.1016/j.physbeh.2007.05.062. Epub 2007 May 31.
8
Determination of blood longitudinal relaxation time (T1) at high magnetic field strengths.
Magn Reson Imaging. 2007 Jun;25(5):733-5. doi: 10.1016/j.mri.2006.10.020. Epub 2006 Dec 8.
9
Mouse MRI using phased-array coils.
NMR Biomed. 2007 May;20(3):326-34. doi: 10.1002/nbm.1156.
10
Anatomical and functional phenotyping of mice models of Alzheimer's disease by MR microscopy.
Ann N Y Acad Sci. 2007 Feb;1097:12-29. doi: 10.1196/annals.1379.006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验