Suppr超能文献

人脑的定量 SENSE-MRSI。

Quantitative SENSE-MRSI of the human brain.

机构信息

Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.

出版信息

Magn Reson Imaging. 2010 Apr;28(3):305-13. doi: 10.1016/j.mri.2009.11.003. Epub 2010 Jan 4.

Abstract

PURPOSE

To develop a method for estimating metabolite concentrations using phased-array coils and sensitivity-encoded (SENSE) magnetic resonance spectroscopic images (MRSI) of the human brain.

MATERIALS AND METHODS

The method is based on the phantom replacement technique and uses receive coil sensitivity maps and body-coil loading factors to account for receive B(1) inhomogeneity and variable coil loading, respectively. Corrections for cerebrospinal fluid content from the MRSI voxel were also applied, and the total protocol scan time was less than 15 min. The method was applied to 10 normal human volunteers using a multislice 2D-MRSI sequence at 3 T, and seven different brain regions were quantified.

RESULTS

N-Acetyl aspartate (NAA) concentrations varied from 9.7 to 14.7 mM, creatine (Cr) varied from 6.6 to 10.6 mM and choline (Cho) varied from 1.6 to 3.0 mM, in good general agreement with prior literature values.

CONCLUSIONS

Quantitative SENSE-MRSI of the human brain is routinely possible using an adapted phantom-replacement technique. The method may also be applied to other MRSI techniques, including conventional phase encoding, with phased-array receiver coils, provided that coil sensitivity profiles can be measured.

摘要

目的

开发一种使用相控阵线圈和人体脑部的灵敏度编码(SENSE)磁共振波谱成像(MRSI)估计代谢物浓度的方法。

材料和方法

该方法基于幻影替换技术,使用接收线圈灵敏度图和体线圈加载因子分别来考虑接收 B(1)不均匀性和可变的线圈加载。还对 MRSI 体素中的脑脊液含量进行了校正,并且总协议扫描时间小于 15 分钟。该方法应用于 10 名正常志愿者,使用 3T 的多切片 2D-MRSI 序列,并对 7 个不同的脑区进行了定量。

结果

N-乙酰天冬氨酸(NAA)浓度在 9.7 至 14.7mM 之间变化,肌酸(Cr)浓度在 6.6 至 10.6mM 之间变化,胆碱(Cho)浓度在 1.6 至 3.0mM 之间变化,总体上与先前的文献值一致。

结论

使用适应性幻影替换技术,常规进行人体脑部的定量 SENSE-MRSI 是可行的。该方法也可应用于其他 MRSI 技术,包括常规相位编码,使用相控阵接收线圈,前提是可以测量线圈灵敏度图。

相似文献

1
Quantitative SENSE-MRSI of the human brain.
Magn Reson Imaging. 2010 Apr;28(3):305-13. doi: 10.1016/j.mri.2009.11.003. Epub 2010 Jan 4.
2
Fast 1H spectroscopic imaging using a multi-element head-coil array.
Magn Reson Med. 1998 Aug;40(2):185-93. doi: 10.1002/mrm.1910400204.
3
Flip-angle mapping of 31P coils by steady-state MR spectroscopic imaging.
J Magn Reson Imaging. 2014 Aug;40(2):391-7. doi: 10.1002/jmri.24401. Epub 2013 Nov 4.
6
Single-shot magnetic resonance spectroscopic imaging with partial parallel imaging.
Magn Reson Med. 2009 Mar;61(3):541-7. doi: 10.1002/mrm.21855.
7
Image-fusion of MR spectroscopic images for treatment planning of gliomas.
Med Phys. 2006 Jan;33(1):32-40. doi: 10.1118/1.2128497.
8
3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.
J Magn Reson Imaging. 2007 Jul;26(1):23-30. doi: 10.1002/jmri.20970.
9
A novel multifrequency-tuned transceiver array for human-brain P-MRSI at 7 T.
Magn Reson Med. 2025 Jun;93(6):2640-2654. doi: 10.1002/mrm.30449. Epub 2025 Feb 4.
10
Coil combination of multichannel MRSI data at 7 T: MUSICAL.
NMR Biomed. 2013 Dec;26(12):1796-805. doi: 10.1002/nbm.3019. Epub 2013 Sep 4.

引用本文的文献

1
Accelerated 3D metabolite T mapping of the brain using variable-flip-angle SPICE.
Magn Reson Med. 2024 Oct;92(4):1310-1322. doi: 10.1002/mrm.30200. Epub 2024 Jun 24.
2
Atlas-Based Adaptive Hadamard-Encoded MR Spectroscopic Imaging at 3T.
Tomography. 2023 Aug 23;9(5):1592-1602. doi: 10.3390/tomography9050127.
3
Accelerated MR spectroscopic imaging-a review of current and emerging techniques.
NMR Biomed. 2021 May;34(5):e4314. doi: 10.1002/nbm.4314. Epub 2020 May 12.
4
Methodological consensus on clinical proton MRS of the brain: Review and recommendations.
Magn Reson Med. 2019 Aug;82(2):527-550. doi: 10.1002/mrm.27742. Epub 2019 Mar 28.
6
Dual-volume excitation and parallel reconstruction for J-difference-edited MR spectroscopy.
Magn Reson Med. 2017 Jan;77(1):16-22. doi: 10.1002/mrm.26536. Epub 2016 Nov 8.
7
(2 + 1)D-CAIPIRINHA accelerated MR spectroscopic imaging of the brain at 7T.
Magn Reson Med. 2017 Aug;78(2):429-440. doi: 10.1002/mrm.26386. Epub 2016 Aug 22.
8
Reproducibility of brain metabolite concentration measurements in lesion free white matter at 1.5 T.
BMC Med Imaging. 2015 Sep 29;15:40. doi: 10.1186/s12880-015-0085-9.
9
Constrained Source Space MR Spectroscopy: Multiple Voxels, No Gradient Readout.
AJNR Am J Neuroradiol. 2015 Aug;36(8):1436-43. doi: 10.3174/ajnr.A4319. Epub 2015 Jun 18.
10
99m-Technetium binding site in bone marrow mononuclear cells.
Stem Cell Res Ther. 2015 Jun 4;6(1):115. doi: 10.1186/s13287-015-0107-0.

本文引用的文献

1
The signal-to-noise ratio of the nuclear magnetic resonance experiment. 1976.
J Magn Reson. 2011 Dec;213(2):329-43. doi: 10.1016/j.jmr.2011.09.018.
2
In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla.
Magn Reson Med. 2007 Jun;57(6):977-82. doi: 10.1002/mrm.21234.
6
Monitoring and correcting spatio-temporal variations of the MR scanner's static magnetic field.
MAGMA. 2006 Nov;19(5):223-36. doi: 10.1007/s10334-006-0050-2. Epub 2006 Oct 17.
7
1H MR spectroscopy of the brain: absolute quantification of metabolites.
Radiology. 2006 Aug;240(2):318-32. doi: 10.1148/radiol.2402050314.
8
Comprehensive processing, display and analysis for in vivo MR spectroscopic imaging.
NMR Biomed. 2006 Jun;19(4):492-503. doi: 10.1002/nbm.1025.
9
Use of tissue water as a concentration reference for proton spectroscopic imaging.
Magn Reson Med. 2006 Jun;55(6):1219-26. doi: 10.1002/mrm.20901.
10
Minimum-norm reconstruction for sensitivity-encoded magnetic resonance spectroscopic imaging.
Magn Reson Med. 2006 Feb;55(2):287-95. doi: 10.1002/mrm.20758.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验