Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, 3307 North Broad Street, Philadelphia, Pennsylvania 19140, USA.
Biochemistry. 2010 Feb 23;49(7):1388-95. doi: 10.1021/bi9018225.
Quinolinic acid phosphoribosyltransferase (QAPRTase, EC 2.4.2.19) forms nicotinate mononucleotide (NAMN) from quinolinic acid (QA) and 5-phosphoribosyl 1-pyrophosphate (PRPP). Previously determined crystal structures of QAPRTase.QA and QAPRTase.PA.PRPP complexes show positively charged residues (Arg118, Arg152, Arg175, Lys185, and His188) lining the QA binding site. To assess the roles of these residues in the Salmonella typhimurium QAPRTase reaction, they were individually mutated to alanine and the recombinant proteins overexpressed and purified from a recombineered Escherichia coli strain that lacks the QAPRTase gene. Gel filtration indicated that the mutations did not affect the dimeric aggregation state of the enzymes. Arg175 is critical for the QAPRTase reaction, and its mutation to alanine produced an inactive enzyme. The k(cat) values for R152A and K185A were reduced by 33-fold and 625-fold, and binding affinity of PRPP and QA to the enzymes decreased. R152A and K185A mutants displayed 116-fold and 83-fold increases in activity toward the normally inactive QA analogue, nicotinic acid (NA), indicating roles for these residues in defining the substrate specificity of QAPRTase. Moreover, K185A QAPRTase displayed a 300-fold higher k(cat)/K(m) for NA over the natural substrate QA. Pre-steady-state analysis of K185A with QA revealed a burst of nucleotide formation followed by a slower steady-state rate, unlike the linear kinetics of WT. Intriguingly, pre-steady-state analysis of K185A with NA produced a rapid but linear rate for NAMN formation. The result implies a critical role for Lys185 in the chemistry of the QAPRTase intermediate. Arg118 is an essential residue that reaches across the dimer interface. Mutation of Arg118 to alanine resulted in 5000-fold decrease in k(cat) value and a decrease in the binding affinity of QA and PRPP to R152A. Equimolar mixtures of R118A with inactive or virtually inactive mutants produced approximately 50% of the enzymatic activity of WT, establishing an interfacial role for Arg118 during catalysis.
喹啉酸磷酸核糖基转移酶 (QAPRTase,EC 2.4.2.19) 可将喹啉酸 (QA) 和 5-磷酸核糖基 1-焦磷酸 (PRPP) 转化为烟酰胺单核苷酸 (NAMN)。先前确定的 QAPRTase.QA 和 QAPRTase.PA.PRPP 复合物的晶体结构显示正电荷残基(Arg118、Arg152、Arg175、Lys185 和 His188)排列在 QA 结合位点周围。为了评估这些残基在鼠伤寒沙门氏菌 QAPRTase 反应中的作用,将它们分别突变为丙氨酸,并从缺乏 QAPRTase 基因的重组大肠杆菌菌株中过表达和纯化重组蛋白。凝胶过滤表明突变不会影响酶的二聚体聚集状态。Arg175 对 QAPRTase 反应至关重要,其突变为丙氨酸会产生无活性的酶。R152A 和 K185A 的 kcat 值分别降低了 33 倍和 625 倍,并且 PRPP 和 QA 与酶的结合亲和力降低。R152A 和 K185A 突变体对通常无活性的 QA 类似物烟碱酸 (NA) 的活性分别增加了 116 倍和 83 倍,表明这些残基在定义 QAPRTase 的底物特异性方面发挥作用。此外,K185A QAPRTase 对 NA 的 kcat/Km 比天然底物 QA 高 300 倍。用 QA 进行 K185A 的预稳态分析显示核苷酸形成的爆发随后是较慢的稳态速率,与 WT 的线性动力学不同。有趣的是,用 NA 进行 K185A 的预稳态分析产生了快速但线性的 NAMN 形成速率。结果暗示了赖氨酸 185 在 QAPRTase 中间体化学中的关键作用。Arg118 是一个必需的残基,它横跨二聚体界面。Arg118 突变为丙氨酸会导致 kcat 值降低 5000 倍,QA 和 PRPP 与 R152A 的结合亲和力降低。等摩尔比的 R118A 与无活性或几乎无活性的突变体混合产生约 WT 酶活性的 50%,这表明 Arg118 在催化过程中具有界面作用。