Rajavel M, Lalo D, Gross J W, Grubmeyer C
Fels Research Institute, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
Biochemistry. 1998 Mar 24;37(12):4181-8. doi: 10.1021/bi9720134.
Nicotinic acid phosphoribosyltransferase (NAPRTase; EC 2.4.2.11) forms nicotinic acid mononucleotide (NAMN) and PPi from 5-phosphoribosyl 1-pyrophosphate (PRPP) and nicotinic acid (NA). The Vmax NAMN synthesis activity of the Salmonella typhimurium enzyme is stimulated about 10-fold by ATP, which, when present, is hydrolyzed to ADP and Pi in 1:1 stoichiometry with NAMN formed. The overall NAPRTase reaction involves phosphorylation of a low-affinity form of the enzyme by ATP, followed by generation of a high-affinity form of the enzyme, which then binds substrates and produces NAMN. Hydrolysis of E-P then regenerates the low-affinity form of the enzyme with subsequent release of products. Our earlier studies [Gross, J., Rajavel, M., Segura, E., and Grubmeyer, C. (1996) Biochemistry 35, 3917-3924] have shown that His-219 becomes phosphorylated in the N1 (pi) position by ATP. Here, we have mutated His-219 to glutamate and asparagine and determined the properties of the purified mutant enzymes. The mutant NAPRTases fail to carry out ATPase, autophosphorylation, or ADP/ATP exchanges seen with wild-type (WT) enzyme. The mutants do catalyze the slow formation of NAMN in the absence of ATP with rates and KM values similar to those of WT. In striking contrast to WT, NAMN formation by the mutant enzymes is competitively inhibited by ATP. Thus, the NAMN synthesis reaction may occur at a site overlapping that for ATP. Previous studies suggest that the yeast NAPRTase does not catalyze NAMN synthesis in the absence of ATP. We have cloned, overexpressed, and purified the yeast enzyme and report its kinetic properties, which are similar to those of the bacterial enzyme.
烟酸磷酸核糖基转移酶(NAPRTase;EC 2.4.2.11)利用5-磷酸核糖-1-焦磷酸(PRPP)和烟酸(NA)生成烟酸单核苷酸(NAMN)和焦磷酸(PPi)。鼠伤寒沙门氏菌酶的Vmax NAMN合成活性受到ATP的约10倍刺激,当ATP存在时,它会以与生成的NAMN 1:1的化学计量比水解为ADP和磷酸。总的NAPRTase反应包括ATP对该酶低亲和力形式的磷酸化,随后产生高亲和力形式的酶,然后该高亲和力形式的酶结合底物并生成NAMN。E-P的水解随后使酶的低亲和力形式再生,并随后释放产物。我们早期的研究[格罗斯,J.,拉贾维尔,M.,塞古拉,E.,和格鲁布迈尔,C.(1996年)《生物化学》35,3917 - 3924]表明,His-219在N1(π)位置被ATP磷酸化。在此,我们将His-219突变为谷氨酸和天冬酰胺,并测定了纯化的突变酶的性质。突变的NAPRTases无法进行野生型(WT)酶所具有的ATP酶活性、自磷酸化或ADP/ATP交换。这些突变体在没有ATP的情况下确实能催化NAMN的缓慢形成,其速率和KM值与WT相似。与WT形成鲜明对比的是,突变酶形成NAMN的过程受到ATP的竞争性抑制。因此,NAMN合成反应可能发生在与ATP重叠的位点。先前的研究表明,酵母NAPRTase在没有ATP的情况下不催化NAMN合成。我们已经克隆、过表达并纯化了酵母酶,并报告了其动力学性质,这些性质与细菌酶的相似。