Control Systems Centre, School of Electrical and Electronic Engineering, The University of Manchester, Manchester M60 1QD, UK.
Bull Math Biol. 2010 Apr;72(3):697-718. doi: 10.1007/s11538-009-9466-y. Epub 2010 Jan 5.
An important aspect of systems biology research is the so-called "reverse engineering" of cellular metabolic dynamics from measured input-output data. This allows researchers to estimate and validate both the pathway's structure as well as the kinetic constants. In this paper, the recently published 'Proximate Parameter Tuning' (PPT) method for the identification of biochemical networks is analysed. In particular, it is shown that the described PPT algorithm is essentially equivalent to a sequential linear programming implementation of a constrained optimization problem. The corresponding objective function consists of two parts, the first emphasises the data fitting where a residual 1-norm is used, and the second emphasises the proximity of the calculated parameters to the specified nominal values, using an infinity-norm. The optimality properties of PPT algorithm solution as well as its geometric interpretation are analyzed. The concept of optimal parameter locus is applied for the exploration of the entire family of optimal solutions. An efficient implementation of the parameter locus is also developed. Parallels are drawn with 1-norm parameter deviation regularization which attempt to fit the data with a minimal number of parameters. Finally, a small example is used to illustrate all of these properties.
系统生物学研究的一个重要方面是从测量的输入-输出数据中对细胞代谢动力学进行所谓的“反向工程”。这允许研究人员估计和验证途径的结构以及动力学常数。在本文中,分析了最近发表的用于鉴定生化网络的“近似参数调整”(PPT)方法。特别地,表明所描述的 PPT 算法本质上等同于约束优化问题的顺序线性规划实现。相应的目标函数由两部分组成,第一部分强调数据拟合,其中使用残差 1-范数,第二部分强调计算参数与指定标称值的接近程度,使用无穷范数。分析了 PPT 算法解的最优性和几何解释。最优参数轨迹的概念被应用于探索整个最优解族。还开发了参数轨迹的有效实现。与尝试用最小数量的参数拟合数据的 1-范数参数偏差正则化进行了类比。最后,用一个小例子来说明所有这些特性。