Baker Syed M, Schallau Kai, Junker Björn H
Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben 06466, Germany.
J Integr Bioinform. 2010 Mar 25;7(3):464. doi: 10.2390/biecoll-jib-2010-133.
Computational models in systems biology are usually characterized by a lack of reliable parameter values. This is especially true for kinetic metabolic models. Experimental data can be used to estimate these missing parameters. Different optimization techniques have been explored to solve this challenging task but none has proved to be superior to the other. In this paper we review the problem of parameter estimation in kinetic models. We focus on the suitability of four commonly used optimization techniques of parameter estimation in biochemical pathways and make a comparison between those methods. The suitability of each technique is evaluated based on the ability of converging to a solution within a reasonable amount of time. As most local optimization methods fail to arrive at a satisfactory solution we only considered the global optimization techniques. A case study of the upper part of Glycolysis consisting 15 parameters is taken as the benchmark model for evaluating these methods.
系统生物学中的计算模型通常缺乏可靠的参数值。对于动力学代谢模型来说尤其如此。实验数据可用于估计这些缺失的参数。人们探索了不同的优化技术来解决这一具有挑战性的任务,但没有一种技术被证明比其他技术更优越。在本文中,我们回顾了动力学模型中的参数估计问题。我们关注生物化学途径中四种常用参数估计优化技术的适用性,并对这些方法进行比较。每种技术的适用性是根据在合理时间内收敛到一个解的能力来评估的。由于大多数局部优化方法无法得到令人满意的解,我们只考虑全局优化技术。以包含15个参数的糖酵解上部为例作为评估这些方法的基准模型。