The King's Fund, 11-13 Cavendish Square, London W1G 0AN, United Kingdom.
Health Serv Res. 2010 Apr;45(2):497-513. doi: 10.1111/j.1475-6773.2009.01069.x. Epub 2009 Dec 30.
To develop a method of hospital market area identification using multivariate data, and compare it with existing standard methods.
Hospital Episode Statistics, a secondary dataset of admissions data from all hospitals in England, between April 2005 and March 2006.
Seven criteria for catchment area definition were proposed. K-means clustering was used on several variables describing the relationship between hospitals and local authority districts (LADs) to enable the placement of every LAD into or out of the catchment area for every hospital. Principal component analysis confirmed the statistical robustness of the method, and the method was compared against existing methods using the seven criteria.
Existing methods for identifying catchment areas do not capture desirable properties of a hospital market area. Catchment areas identified using K-means clustering are superior to those identified using existing Marginal methods against these criteria and are also statistically robust.
K-means clustering uses multivariate data on the relationship between hospitals and geographical units to define catchment areas that are both statistically robust and more informative than those obtained from existing methods.
利用多元数据开发一种医院市场区域识别方法,并与现有标准方法进行比较。
医院入院统计数据,2005 年 4 月至 2006 年 3 月期间英格兰所有医院的入院数据的二级数据集。
提出了七个用于界定服务范围的标准。对描述医院与地方行政区(LAD)之间关系的多个变量进行 K 均值聚类,以便将每个 LAD 归入或排除在每个医院的服务范围内。主成分分析确认了该方法的统计稳健性,并使用这七个标准对该方法与现有方法进行了比较。
现有的识别服务范围的方法无法捕捉医院市场区域的理想属性。使用 K 均值聚类识别的服务范围优于使用现有边缘方法识别的服务范围,并且在这些标准下具有统计学上的稳健性。
K 均值聚类使用医院与地理单位之间关系的多元数据来定义服务范围,这些范围不仅具有统计学上的稳健性,而且比现有方法获得的服务范围更具信息量。