Suppr超能文献

贝叶斯回归在确定犬猫癌症病例集水区中的应用。

Application of Bayesian Regression for the Identification of a Catchment Area for Cancer Cases in Dogs and Cats.

作者信息

Díaz Cao José Manuel, Kent Michael S, Rupasinghe Ruwini, Martínez-López Beatriz

机构信息

Center for Animal Disease Modeling and Surveillance (CADMS), Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.

Center for Companion Animal Health and the Department of Surgical & Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.

出版信息

Front Vet Sci. 2022 Jul 25;9:937904. doi: 10.3389/fvets.2022.937904. eCollection 2022.

Abstract

Research on cancer in dogs and cats, among other diseases, finds an important source of information in registry data collected from hospitals. These sources have proved to be decisive in establishing incidences and identifying temporal patterns and risk factors. However, the attendance of patients is not random, so the correct delimitation of the hospital catchment area (CA) as well as the identification of the factors influencing its shape is relevant to prevent possible biases in posterior inferences. Despite this, there is a lack of data-driven approaches in veterinary epidemiology to establish CA. Therefore, our aim here was to apply a Bayesian method to estimate the CA of a hospital. We obtained cancer ( = 27,390) and visit ( = 232,014) registries of dogs and cats attending the Veterinary Medical Teaching Hospital of the University of California, Davis from 2000 to 2019 with 2,707 census tracts (CTs) of 40 neighboring counties. We ran hierarchical Bayesian models with different likelihood distributions to define CA for cancer cases and visits based on the exceedance probabilities for CT random effects, adjusting for species and period (2000-2004, 2005-2009, 2010-2014, and 2015-2019). The identified CAs of cancer cases and visits represented 75.4 and 83.1% of the records, respectively, including only 34.6 and 39.3% of the CT in the study area. The models detected variation by species (higher number of records in dogs) and period. We also found that distance to hospital and average household income were important predictors of the inclusion of a CT in the CA. Our results show that the application of this methodology is useful for obtaining data-driven CA and evaluating the factors that influence and predict data collection. Therefore, this could be useful to improve the accuracy of analysis and inferences based on registry data.

摘要

对犬猫癌症及其他疾病的研究发现,从医院收集的登记数据是重要的信息来源。这些数据来源已被证明在确定发病率、识别时间模式和风险因素方面具有决定性作用。然而,患者的就诊并非随机,因此正确界定医院的服务区域(CA)以及识别影响其形状的因素对于防止后续推断中可能出现的偏差至关重要。尽管如此,兽医流行病学中缺乏数据驱动的方法来确定服务区域。因此,我们的目的是应用贝叶斯方法来估计一家医院的服务区域。我们获取了2000年至2019年期间加利福尼亚大学戴维斯分校兽医学院教学医院收治的犬猫癌症登记数据(n = 27,390)和就诊登记数据(n = 232,014),以及周边40个县的2,707个普查区(CT)。我们运行了具有不同似然分布的分层贝叶斯模型,根据CT随机效应的超概率为癌症病例和就诊定义服务区域,并对物种和时间段(2000 - 2004年、2005 - 2009年、2010 - 2014年和2015 - 2019年)进行了调整。确定的癌症病例和就诊的服务区域分别占记录的75.4%和83.1%,仅包括研究区域内34.6%和39.3%的普查区。模型检测到了物种差异(犬的记录数量更多)和时间段差异。我们还发现,到医院的距离和平均家庭收入是普查区被纳入服务区域的重要预测因素。我们的结果表明,这种方法的应用有助于获得数据驱动的服务区域,并评估影响和预测数据收集的因素。因此,这可能有助于提高基于登记数据的分析和推断的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9647/9359078/81ec1e5c14c3/fvets-09-937904-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验