Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
Heredity (Edinb). 2010 Nov;105(5):483-94. doi: 10.1038/hdy.2009.180. Epub 2010 Jan 6.
The least absolute shrinkage and selection operator (Lasso) estimation of regression coefficients can be expressed as Bayesian posterior mode estimation of the regression coefficients under various hierarchical modeling schemes. A Bayesian hierarchical model requires hyper prior distributions. The regression coefficients are parameters of interest. The normal distribution assigned to each regression coefficient is a prior distribution. The variance parameter in the normal prior distribution is further assigned a hyper prior distribution so that the variance parameter can be estimated from the data. We developed an expectation-maximization (EM) algorithm to estimate the variance parameter of the prior distribution for each regression coefficient. Performance of the EM algorithm was evaluated through simulation study and real data analysis. We found that the Jeffreys' hyper prior for the variance component usually performs well with regard to generating the desired sparseness of the regression model. The EM algorithm can handle not only the usual regression models but it also conveniently deals with linear models in which predictors are defined as classification variables. In the context of quantitative trait loci (QTL) mapping, this new EM algorithm can estimate both genotypic values and QTL effects expressed as linear contrasts of the genotypic values.
回归系数的最小绝对收缩和选择算子(Lasso)估计可以表示为在各种层次建模方案下回归系数的贝叶斯后验模式估计。贝叶斯层次模型需要超先验分布。回归系数是感兴趣的参数。分配给每个回归系数的正态分布是先验分布。正态先验分布中的方差参数进一步分配给超先验分布,以便可以从数据中估计方差参数。我们开发了期望最大化(EM)算法来估计每个回归系数的先验分布的方差参数。通过模拟研究和真实数据分析评估了 EM 算法的性能。我们发现,方差分量的杰弗里斯超先验通常在产生所需的回归模型稀疏性方面表现良好。EM 算法不仅可以处理通常的回归模型,还可以方便地处理将预测器定义为分类变量的线性模型。在数量性状位点(QTL)映射的上下文中,这个新的 EM 算法可以估计基因型值和 QTL 效应,这些效应表示为基因型值的线性对比。