Suppr超能文献

改进的 LASSO 先验用于收缩数量性状基因座定位。

Improved LASSO priors for shrinkage quantitative trait loci mapping.

机构信息

Life Science College, Heilongjiang Bayi Agricultural University, Daqing 163319, People’s Republic of China.

出版信息

Theor Appl Genet. 2012 May;124(7):1315-24. doi: 10.1007/s00122-012-1789-7.

Abstract

Recently, the Bayesian least absolute shrinkage and selection operator (LASSO) has been successfully applied to multiple quantitative trait loci (QTL) mapping, which assigns the double-exponential prior and the Student's t prior to QTL effect that lead to the shrinkage estimate of QTL effect. However, as reported by many researchers, the Bayesian LASSO usually cannot effectively shrink the effects of zero-effect QTL very close to zero. In this study, the double-exponential prior and Student's t prior are modified so that the estimate of the effect for zero-effect QTL can be effectively shrunk toward zero. It is also found that the Student's t prior is virtually the same as the Jeffreys' prior, since both the shape and scale parameters of the scaled inverse Chi-square prior involved in the Student's t prior are estimated very close to zero. Besides the two modified Bayesian Markov chain Monte Carlo (MCMC) algorithms, an expectation-maximization (EM) algorithm with use of the modified double-exponential prior is also adapted. The results shows that the three new methods perform similarly on true positive rate and false positive rate for QTL detection, and all of them outperform the Bayesian LASSO.

摘要

最近,贝叶斯最小绝对收缩和选择算子 (LASSO) 已成功应用于多个数量性状基因座 (QTL) 作图,它为 QTL 效应分配双指数先验和学生 t 先验,导致 QTL 效应的收缩估计。然而,正如许多研究人员报告的那样,贝叶斯 LASSO 通常不能有效地将零效应 QTL 的效应收缩到非常接近零。在这项研究中,修改了双指数先验和学生 t 先验,以便有效地将零效应 QTL 的效应估计收缩到零。还发现学生 t 先验实际上与杰弗里斯先验相同,因为学生 t 先验中涉及的缩放逆卡方先验的形状和比例参数都被估计非常接近零。除了两种修改后的贝叶斯马尔可夫链蒙特卡罗 (MCMC) 算法外,还采用了使用修改后的双指数先验的期望最大化 (EM) 算法。结果表明,三种新方法在 QTL 检测的真阳性率和假阳性率上表现相似,并且都优于贝叶斯 LASSO。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验