Suppr超能文献

未成熟和成熟的巨核细胞可增强成骨细胞增殖并抑制破骨细胞形成。

Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation.

作者信息

Ciovacco Wendy A, Cheng Ying-Hua, Horowitz Mark C, Kacena Melissa A

机构信息

Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, Connecticut, USA.

出版信息

J Cell Biochem. 2010 Mar 1;109(4):774-81. doi: 10.1002/jcb.22456.

Abstract

Recent data suggest that megakaryocytes (MKs) play a role in skeletal homeostasis. In vitro and in vivo data show that MKs stimulate osteoblast (OB) proliferation and inhibit osteoclast (OC) formation, thus favoring net bone deposition. There are several mouse models with dysregulated megakaryopoiesis and resultant high bone mass phenotypes. One such model that our group has extensively studied is GATA-1 deficient mice. GATA-1 is a transcription factor required for normal megakaryopoiesis, and mice deficient in GATA-1 have increases in immature MK number and a striking increase in bone mass. While the increased bone mass could simply be a result of increased MK number, here we take a more in depth look at the MKs of these mice to see if there is a unique factor inherent to GATA-1 deficient MKs that favors increased bone deposition. We show that increased MK number does correspond with increased OB proliferation and decreased OC formation that stage of maturation does not alter the effect of MKs on bone cell lineages beyond the megakaryoblast stage, and that GATA-1 deficient MKs survive longer than wild-type controls. So while increased MK number in GATA-1 deficient mice likely contributes to the high bone mass phenotype, we propose that the increased longevity of this lineage also plays a role. Since GATA-1 deficient MKs live longer they are able to exert both more proliferative influence on OBs and more inhibitory influence on OCs.

摘要

近期数据表明,巨核细胞(MKs)在骨骼稳态中发挥作用。体外和体内数据显示,巨核细胞刺激成骨细胞(OB)增殖并抑制破骨细胞(OC)形成,从而有利于净骨沉积。有几种巨核细胞生成失调并导致高骨量表型的小鼠模型。我们团队广泛研究的一个这样的模型是GATA - 1缺陷小鼠。GATA - 1是正常巨核细胞生成所需的转录因子,GATA - 1缺陷的小鼠未成熟巨核细胞数量增加,骨量显著增加。虽然骨量增加可能仅仅是巨核细胞数量增加的结果,但在这里我们更深入地研究这些小鼠的巨核细胞,看看GATA - 1缺陷的巨核细胞是否存在有利于增加骨沉积的独特因素。我们表明,巨核细胞数量增加确实与成骨细胞增殖增加和破骨细胞形成减少相对应,成熟阶段不会改变巨核细胞对巨核母细胞阶段以外的骨细胞谱系的影响,并且GATA - 1缺陷的巨核细胞比野生型对照存活时间更长。因此,虽然GATA - 1缺陷小鼠中巨核细胞数量增加可能导致高骨量表型,但我们认为该谱系寿命的延长也起到了作用。由于GATA - 1缺陷的巨核细胞存活时间更长,它们能够对成骨细胞产生更多的增殖影响,并对破骨细胞产生更多的抑制影响。

相似文献

2
Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2.
J Bone Miner Res. 2004 Apr;19(4):652-60. doi: 10.1359/JBMR.0301254. Epub 2003 Dec 22.
3
A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells.
Bone. 2006 Nov;39(5):978-984. doi: 10.1016/j.bone.2006.05.019. Epub 2006 Jul 21.
4
Pyk2 regulates megakaryocyte-induced increases in osteoblast number and bone formation.
J Bone Miner Res. 2013 Jun;28(6):1434-45. doi: 10.1002/jbmr.1876.
5
Megakaryocyte-bone cell interactions.
Adv Exp Med Biol. 2010;658:31-41. doi: 10.1007/978-1-4419-1050-9_4.
6
Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass.
Bone. 2019 Oct;127:452-459. doi: 10.1016/j.bone.2019.07.010. Epub 2019 Jul 9.
7
C-Mpl Is Expressed on Osteoblasts and Osteoclasts and Is Important in Regulating Skeletal Homeostasis.
J Cell Biochem. 2016 Apr;117(4):959-69. doi: 10.1002/jcb.25380. Epub 2015 Oct 6.
10
GATA-1 deficiency rescues trabecular but not cortical bone in OPG deficient mice.
J Cell Physiol. 2015 Apr;230(4):783-90. doi: 10.1002/jcp.24803.

引用本文的文献

1
Cellular crosstalk in the bone marrow niche.
J Transl Med. 2024 Dec 3;22(1):1096. doi: 10.1186/s12967-024-05900-6.
4
Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease.
Calcif Tissue Int. 2023 Jul;113(1):83-95. doi: 10.1007/s00223-023-01095-y. Epub 2023 May 27.
6
Inhibition of Osteoblast Differentiation by JAK2 Megakaryocytes Derived From Male Mice With Primary Myelofibrosis.
Front Oncol. 2022 Jul 8;12:929498. doi: 10.3389/fonc.2022.929498. eCollection 2022.
7
Megakaryocyte Diversity in Ontogeny, Functions and Cell-Cell Interactions.
Front Oncol. 2022 Feb 4;12:840044. doi: 10.3389/fonc.2022.840044. eCollection 2022.
8
Craniofacial Bone Tissue Engineering: Current Approaches and Potential Therapy.
Cells. 2021 Nov 3;10(11):2993. doi: 10.3390/cells10112993.
9
Vitamin D and Platelets: A Menacing Duo in COVID-19 and Potential Relation to Bone Remodeling.
Int J Mol Sci. 2021 Sep 16;22(18):10010. doi: 10.3390/ijms221810010.
10
Myeloproliferative disorders and their effects on bone homeostasis: the role of megakaryocytes.
Blood. 2022 May 26;139(21):3127-3137. doi: 10.1182/blood.2021011480.

本文引用的文献

1
The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation.
Bone. 2009 Jan;44(1):80-6. doi: 10.1016/j.bone.2008.08.117. Epub 2008 Sep 10.
2
Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease.
Am J Pathol. 2008 Feb;172(2):430-9. doi: 10.2353/ajpath.2008.070417. Epub 2008 Jan 10.
3
Osteoclast formation and bone resorption are inhibited by megakaryocytes.
Bone. 2006 Nov;39(5):985-990. doi: 10.1016/j.bone.2006.06.004. Epub 2006 Jul 25.
4
Megakaryocyte-mediated inhibition of osteoclast development.
Bone. 2006 Nov;39(5):991-999. doi: 10.1016/j.bone.2006.05.004. Epub 2006 Jun 16.
5
Pathogenesis of myelofibrosis with myeloid metaplasia: Insight from mouse models.
Best Pract Res Clin Haematol. 2006;19(3):399-412. doi: 10.1016/j.beha.2005.07.002.
6
Osteoclast differentiation independent of the TRANCE-RANK-TRAF6 axis.
J Exp Med. 2005 Sep 5;202(5):589-95. doi: 10.1084/jem.20050978.
7
Fibroblasts express RANKL and support osteoclastogenesis in a COX-2-dependent manner after stimulation with titanium particles.
J Bone Miner Res. 2005 Jul;20(7):1136-48. doi: 10.1359/JBMR.050206. Epub 2005 Feb 14.
9
Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL.
Bone. 2005 May;36(5):812-9. doi: 10.1016/j.bone.2004.12.006. Epub 2005 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验