Suppr超能文献

基于分段生长的胆管树模型在磁共振胰胆管成像中的应用

Segment-growing hierarchical model for bile duct detection in MRCP.

机构信息

Global School of Media, Soongsil University, Seoul, South Korea.

出版信息

J Med Syst. 2009 Dec;33(6):423-33. doi: 10.1007/s10916-008-9204-2.

Abstract

Magnetic resonance cholangiopancreatography (MRCP) is the popular diagnostic imaging sequence for the diagnosis and surgery workup for the pancreatobiliary system and liver. The technique is relatively noisy and suffers from imaging characteristics such as the partial volume effect and varying acquisition orientation, making automatic analysis of the images difficult. This paper explores some of the popular image processing techniques with the goal of selecting suitable features in MRCP images, as a basis for preliminary computer-aided diagnosis systems in biliary structure image reconstruction and disease detection. Visual results and observations are given and analyzed. The findings support that many popular techniques such as texture analysis fail to highlight the structures of interest in MRCP images, whereas multi-scale, multi-resolution and dynamic thresholding achieve better success. The proposed multi-scale combination technique known as the Segment-Growing Hierarchical Model produced good visual results for detection of the bile ducts.

摘要

磁共振胰胆管成像(MRCP)是诊断和手术准备胰胆管系统和肝脏的常用诊断成像序列。该技术相对嘈杂,并受到成像特征的影响,例如部分容积效应和不同的采集方向,使得图像的自动分析变得困难。本文探讨了一些流行的图像处理技术,旨在选择 MRCP 图像中的合适特征,作为胆道结构图像重建和疾病检测的初步计算机辅助诊断系统的基础。给出并分析了视觉结果和观察结果。研究结果表明,许多流行的技术,如纹理分析,未能突出 MRCP 图像中的感兴趣结构,而多尺度、多分辨率和动态阈值处理则取得了更好的效果。所提出的多尺度组合技术,即分段生长层次模型,在检测胆管方面产生了良好的视觉效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验