Suppr超能文献

定量比较谷氨酸能和 GABA 能突触小泡揭示了对包括 MAL2 在内的少数蛋白质的选择性,MAL2 是一种新的突触小泡蛋白。

Quantitative comparison of glutamatergic and GABAergic synaptic vesicles unveils selectivity for few proteins including MAL2, a novel synaptic vesicle protein.

机构信息

Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.

出版信息

J Neurosci. 2010 Jan 6;30(1):2-12. doi: 10.1523/JNEUROSCI.4074-09.2010.

Abstract

Synaptic vesicles (SVs) store neurotransmitters and release them by exocytosis. The vesicular neurotransmitter transporters discriminate which transmitter will be sequestered and stored by the vesicles. However, it is unclear whether the neurotransmitter phenotype of SVs is solely defined by the transporters or whether it is associated with additional proteins. Here we have compared the protein composition of SVs enriched in vesicular glutamate (VGLUT-1) and GABA transporters (VGAT), respectively, using quantitative proteomics. Of >450 quantified proteins, approximately 50 were differentially distributed between the populations, with only few of them being specific for SVs. Of these, the most striking differences were observed for the zinc transporter ZnT3 and the vesicle proteins SV2B and SV31 that are associated preferentially with VGLUT-1 vesicles, and for SV2C that is associated mainly with VGAT vesicles. Several additional proteins displayed a preference for VGLUT-1 vesicles including, surprisingly, synaptophysin, synaptotagmins, and syntaxin 1a. Moreover, MAL2, a membrane protein of unknown function distantly related to synaptophysins and SCAMPs, cofractionated with VGLUT-1 vesicles. Both subcellular fractionation and immunolocalization at the light and electron microscopic level revealed that MAL2 is a bona-fide membrane constituent of SVs that is preferentially associated with VGLUT-1-containing nerve terminals. We conclude that SVs specific for different neurotransmitters share the majority of their protein constituents, with only few vesicle proteins showing preferences that, however, are nonexclusive, thus confirming that the vesicular transporters are the only components essential for defining the neurotransmitter phenotype of a SV.

摘要

突触小泡 (SVs) 储存神经递质,并通过胞吐作用释放它们。囊泡神经递质转运体区分哪些递质将被囊泡隔离和储存。然而,目前尚不清楚 SVs 的神经递质表型是否仅由转运体定义,还是与其他蛋白质相关。在这里,我们使用定量蛋白质组学比较了分别富含囊泡谷氨酸 (VGLUT-1) 和 GABA 转运体 (VGAT) 的 SVs 的蛋白质组成。在 >450 种定量蛋白质中,大约有 50 种在群体之间存在差异分布,其中只有少数几种是 SVs 特有的。在这些差异蛋白中,最显著的差异是锌转运体 ZnT3 和囊泡蛋白 SV2B 和 SV31,它们优先与 VGLUT-1 囊泡相关,而 SV2C 主要与 VGAT 囊泡相关。有几种额外的蛋白质优先与 VGLUT-1 囊泡相关,包括令人惊讶的突触小体蛋白、突触结合蛋白和 syntaxin 1a。此外,MAL2,一种功能未知的膜蛋白,与突触小体蛋白和 SCAMPs 有较远的关系,与 VGLUT-1 囊泡共分离。亚细胞分级分离和在光镜和电子显微镜水平的免疫定位都表明,MAL2 是 SVs 的真正膜成分,优先与含有 VGLUT-1 的神经末梢相关。我们得出结论,不同神经递质的 SVs 共享其大多数蛋白质成分,只有少数囊泡蛋白表现出偏好,但这种偏好不是排他性的,因此证实囊泡转运体是唯一决定 SV 神经递质表型的必需成分。

相似文献

2
Unique pH dynamics in GABAergic synaptic vesicles illuminates the mechanism and kinetics of GABA loading.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10702-7. doi: 10.1073/pnas.1604527113. Epub 2016 Sep 6.
6
Immunoisolation of GABA-specific synaptic vesicles defines a functionally distinct subset of synaptic vesicles.
J Neurosci. 2000 Jul 1;20(13):4904-11. doi: 10.1523/JNEUROSCI.20-13-04904.2000.
8
Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3.
Neuron. 2022 May 4;110(9):1483-1497.e7. doi: 10.1016/j.neuron.2022.02.008. Epub 2022 Mar 8.
9
Synaptic and vesicular coexistence of VGLUT and VGAT in selected excitatory and inhibitory synapses.
J Neurosci. 2010 Jun 2;30(22):7634-45. doi: 10.1523/JNEUROSCI.0141-10.2010.
10
Differential pH Dynamics in Synaptic Vesicles From Intact Glutamatergic and GABAergic Synapses.
Front Synaptic Neurosci. 2018 Dec 3;10:44. doi: 10.3389/fnsyn.2018.00044. eCollection 2018.

引用本文的文献

1
Proximity labeling uncovers the synaptic proteome under physiological and pathological conditions.
Front Cell Neurosci. 2025 Jul 23;19:1638627. doi: 10.3389/fncel.2025.1638627. eCollection 2025.
2
Alzheimer's genetic risk factor Bin1 controls synapse vesicle exo-endocytosis in inhibitory synapses.
Cell Rep. 2025 Aug 26;44(8):116005. doi: 10.1016/j.celrep.2025.116005. Epub 2025 Jul 15.
3
Synaptic vesicle-omics in mice captures signatures of aging and synucleinopathy.
Nat Commun. 2025 May 1;16(1):4079. doi: 10.1038/s41467-025-59441-7.
4
Neuronal network inactivity potentiates neuropeptide release from mouse cortical neurons.
eNeuro. 2025 Mar 18;12(3). doi: 10.1523/ENEURO.0555-24.2024.
6
Monitoring of activity-driven trafficking of endogenous synaptic proteins through proximity labeling.
PLoS Biol. 2024 Oct 28;22(10):e3002860. doi: 10.1371/journal.pbio.3002860. eCollection 2024 Oct.
7
Observing isolated synaptic vesicle association and fusion ex vivo.
Nat Protoc. 2024 Nov;19(11):3139-3161. doi: 10.1038/s41596-024-01014-x. Epub 2024 Jul 2.
8
Longitudinal Neuropathological Consequences of Extracranial Radiation Therapy in Mice.
Int J Mol Sci. 2024 May 24;25(11):5731. doi: 10.3390/ijms25115731.
9
Structure and topography of the synaptic V-ATPase-synaptophysin complex.
Nature. 2024 Jul;631(8022):899-904. doi: 10.1038/s41586-024-07610-x. Epub 2024 Jun 5.
10
Beyond the MUN domain, Munc13 controls priming and depriming of synaptic vesicles.
Cell Rep. 2024 May 28;43(5):114026. doi: 10.1016/j.celrep.2024.114026. Epub 2024 May 21.

本文引用的文献

1
The use of titanium dioxide micro-columns to selectively isolate phosphopeptides from proteolytic digests.
Methods Mol Biol. 2009;527:57-66, xi. doi: 10.1007/978-1-60327-834-8_5.
2
SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis.
J Neurosci. 2009 Jan 28;29(4):883-97. doi: 10.1523/JNEUROSCI.4521-08.2009.
3
Synaptic vesicle fusion.
Nat Struct Mol Biol. 2008 Jul;15(7):665-74. doi: 10.1038/nsmb.1450.
4
Zinc at glutamatergic synapses.
Neuroscience. 2009 Jan 12;158(1):126-36. doi: 10.1016/j.neuroscience.2008.01.061. Epub 2008 Feb 15.
5
The neurotransmitter cycle and quantal size.
Neuron. 2007 Sep 20;55(6):835-58. doi: 10.1016/j.neuron.2007.09.001.
6
The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation.
EMBO J. 2007 Sep 5;26(17):3981-92. doi: 10.1038/sj.emboj.7601820. Epub 2007 Aug 23.
7
Quantitative proteomics and protein network analysis of hippocampal synapses of CaMKIIalpha mutant mice.
J Proteome Res. 2007 Aug;6(8):3127-33. doi: 10.1021/pr070086w. Epub 2007 Jul 11.
8
Identification and characterization of SV31, a novel synaptic vesicle membrane protein and potential transporter.
J Neurochem. 2007 Oct;103(1):276-87. doi: 10.1111/j.1471-4159.2007.04758.x. Epub 2007 Jul 10.
9
Heterogeneity of glutamatergic and GABAergic release machinery in cerebral cortex.
Neuroscience. 2007 Jun 8;146(4):1829-40. doi: 10.1016/j.neuroscience.2007.02.060. Epub 2007 Apr 19.
10
The synaptic vesicle proteome.
J Neurochem. 2007 Jun;101(6):1448-62. doi: 10.1111/j.1471-4159.2007.04453.x. Epub 2007 Mar 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验