Egashira Yoshihiro, Takase Miki, Watanabe Shoji, Ishida Junji, Fukamizu Akiyoshi, Kaneko Ryosuke, Yanagawa Yuchio, Takamori Shigeo
Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan;
Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan;
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10702-7. doi: 10.1073/pnas.1604527113. Epub 2016 Sep 6.
GABA acts as the major inhibitory neurotransmitter in the mammalian brain, shaping neuronal and circuit activity. For sustained synaptic transmission, synaptic vesicles (SVs) are required to be recycled and refilled with neurotransmitters using an H(+) electrochemical gradient. However, neither the mechanism underlying vesicular GABA uptake nor the kinetics of GABA loading in living neurons have been fully elucidated. To characterize the process of GABA uptake into SVs in functional synapses, we monitored luminal pH of GABAergic SVs separately from that of excitatory glutamatergic SVs in cultured hippocampal neurons. By using a pH sensor optimal for the SV lumen, we found that GABAergic SVs exhibited an unexpectedly higher resting pH (∼6.4) than glutamatergic SVs (pH ∼5.8). Moreover, unlike glutamatergic SVs, GABAergic SVs displayed unique pH dynamics after endocytosis that involved initial overacidification and subsequent alkalization that restored their resting pH. GABAergic SVs that lacked the vesicular GABA transporter (VGAT) did not show the pH overshoot and acidified further to ∼6.0. Comparison of luminal pH dynamics in the presence or absence of VGAT showed that VGAT operates as a GABA/H(+) exchanger, which is continuously required to offset GABA leakage. Furthermore, the kinetics of GABA transport was slower (τ > 20 s at physiological temperature) than that of glutamate uptake and may exceed the time required for reuse of exocytosed SVs, allowing reuse of incompletely filled vesicles in the presence of high demand for inhibitory transmission.
γ-氨基丁酸(GABA)作为哺乳动物大脑中的主要抑制性神经递质,塑造着神经元和神经回路的活动。为了实现持续的突触传递,突触小泡(SVs)需要利用H(+)电化学梯度进行回收并重新填充神经递质。然而,囊泡GABA摄取的潜在机制以及活神经元中GABA装载的动力学尚未完全阐明。为了表征功能性突触中GABA摄取到SVs的过程,我们在培养的海马神经元中分别监测了GABA能SVs和兴奋性谷氨酸能SVs的腔内pH值。通过使用最适合SV内腔的pH传感器,我们发现GABA能SVs的静息pH值(约6.4)比谷氨酸能SVs(pH约5.8)出乎意料地更高。此外,与谷氨酸能SVs不同,GABA能SVs在胞吞作用后表现出独特的pH动态变化,包括最初的过度酸化和随后的碱化,从而恢复其静息pH值。缺乏囊泡GABA转运体(VGAT)的GABA能SVs没有出现pH值过冲,而是进一步酸化至约6.0。在有或没有VGAT的情况下对腔内pH动态变化的比较表明,VGAT作为一种GABA/H(+)交换体发挥作用,持续需要它来抵消GABA的泄漏。此外,GABA转运的动力学比谷氨酸摄取的动力学更慢(在生理温度下τ>20秒),并且可能超过胞吐后SVs重新利用所需的时间,这使得在对抑制性传递有高需求的情况下可以重新利用未完全填充的囊泡。