Université Pierre et Marie Curie-Paris, 6, Paris F-75005, France.
J Neurosci. 2010 Jan 6;30(1):99-109. doi: 10.1523/JNEUROSCI.4305-09.2010.
Although it is well established that low-voltage-activated T-type Ca(2+) channels play a key role in many neurophysiological functions and pathological states, the lack of selective and potent antagonists has so far hampered a detailed analysis of the full impact these channels might have on single-cell and neuronal network excitability as well as on Ca(2+) homeostasis. Recently, a novel series of piperidine-based molecules has been shown to selectively block recombinant T-type but not high-voltage-activated (HVA) Ca(2+) channels and to affect a number of physiological and pathological T-type channel-dependent behaviors. Here we directly show that one of these compounds, 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2), exerts a specific, potent (IC(50) = 22 nm), and reversible inhibition of T-type Ca(2+) currents of thalamocortical and reticular thalamic neurons, without any action on HVA Ca(2+) currents, Na(+) currents, action potentials, and glutamatergic and GABAergic synaptic currents. Thus, under current-clamp conditions, the low-threshold Ca(2+) potential (LTCP)-dependent high-frequency burst firing of thalamic neurons is abolished by TTA-P2, whereas tonic firing remains unaltered. Using TTA-P2, we provide the first direct demonstration of the presence of a window component of Ca(2+) channels in neurons and its contribution to the resting membrane potential of thalamic neurons and to the Up state of their intrinsically generated slow (<1 Hz) oscillation. Moreover, we demonstrate that activation of only a small fraction of the T-type channel population is required to generate robust LTCPs, suggesting that LTCP-driven bursts of action potentials can be evoked at depolarized potentials where the vast majority of T-type channels are inactivated.
尽管已经证实,低电压激活的 T 型钙 (Ca2+) 通道在许多神经生理功能和病理状态中发挥着关键作用,但缺乏选择性和有效的拮抗剂,迄今为止仍妨碍了对这些通道对单细胞和神经元网络兴奋性以及钙 (Ca2+) 稳态的全面影响进行详细分析。最近,一系列新的哌啶基分子已被证明可选择性地阻断重组 T 型但不阻断高电压激活 (HVA) Ca2+通道,并影响多种生理和病理 T 型通道依赖性行为。在这里,我们直接表明,这些化合物中的一种,3,5-二氯-N-[1-(2,2-二甲基-四氢-吡喃-4-基甲基)-4-氟-哌啶-4-基甲基]-苯甲酰胺 (TTA-P2),对丘脑皮质和网状丘脑神经元的 T 型 Ca2+电流具有特异性、强效(IC50=22nm)和可逆的抑制作用,而对 HVA Ca2+电流、钠 (Na+) 电流、动作电位以及谷氨酸能和 GABA 能突触电流没有任何作用。因此,在电流钳条件下,低阈值 Ca2+电位(LTCP)依赖性高频爆发性放电的丘脑神经元被 TTA-P2 所消除,而紧张性放电则保持不变。使用 TTA-P2,我们首次直接证明了神经元中存在 Ca2+通道的窗口成分及其对丘脑神经元静息膜电位和内在产生的缓慢 (<1Hz) 振荡的 Up 状态的贡献。此外,我们证明,只需激活一小部分 T 型通道群体即可产生强大的 LTCP,这表明在绝大多数 T 型通道失活的去极化电位下,也可以引发由 LTCP 驱动的动作电位爆发。