Department of Anesthesiology, University of Virginia Health System, School of Medicine, Charlottesville, VA, USA.
Neuropharmacology. 2012 Aug;63(2):266-73. doi: 10.1016/j.neuropharm.2012.03.018. Epub 2012 Apr 2.
Thalamocortical (TC) neurons provide the major sensory input to the mammalian somatosensory cortex. Decreased activity of these cells may be pivotal in the ability of general anesthetics to induce loss of consciousness and promote sleep (hypnosis). T-type voltage-gated calcium currents (T-currents) have a key function regulating the cellular excitability of TC neurons and previous studies have indicated that volatile general anesthetics may alter the excitability of these neurons. Using a patch-clamp technique, we investigated the mechanisms whereby isoflurane, a common volatile anesthetic, modulates isolated T-currents and T-current-dependent excitability of native TC neurons in acute brain slices of the rat. In voltage-clamp experiments, we found that isoflurane strongly inhibited peak amplitude of T-current, yielding an IC(50) of 1.1 vol-% at physiological membrane potentials. Ensuing biophysical studies demonstrated that inhibition was more prominent at depolarized membrane potentials as evidenced by hyperpolarizing shifts in channel availability curves. In current-clamp experiments we found that isoflurane decreased the rate of depolarization of low-threshold-calcium spikes (LTCSs) and consequently increased the latency of rebound spike firing at the same concentrations that inhibited isolated T-currents. This effect was mimicked by a novel selective T-channel blocker 3,5-dichloro-N-[1-(2,2-dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-ylmethyl]-benzamide (TTA-P2). In contrast, isoflurane and TTA-P2 had minimal effect on resting membrane potential and cell input resistance. We propose that the clinical properties of isoflurane may at least partly be provided by depression of thalamic T-currents.
丘脑皮层(TC)神经元为哺乳动物感觉皮层提供主要的感觉输入。这些细胞活动的减少可能是全身麻醉诱导意识丧失和促进睡眠(催眠)的关键。T 型电压门控钙电流(T 电流)对调节 TC 神经元的细胞兴奋性具有关键作用,先前的研究表明挥发性全身麻醉剂可能改变这些神经元的兴奋性。使用膜片钳技术,我们研究了异氟烷(一种常见的挥发性麻醉剂)调节分离的 T 电流和急性大鼠脑片中原位 TC 神经元的 T 电流依赖性兴奋性的机制。在电压钳实验中,我们发现异氟烷强烈抑制 T 电流的峰值幅度,在生理膜电位下的 IC(50)为 1.1 体积%。随后的生物物理研究表明,抑制作用在去极化膜电位下更为明显,表现为通道可用性曲线的超极化移位。在电流钳实验中,我们发现异氟烷降低了低阈值钙峰(LTCS)的去极化率,并且在相同浓度下抑制了分离的 T 电流,从而增加了反弹峰发射的潜伏期。这一效应被新型选择性 T 通道阻滞剂 3,5-二氯-N-[1-(2,2-二甲基四氢吡喃-4-基甲基)-4-氟-哌啶-4-基甲基]-苯甲酰胺(TTA-P2)模拟。相比之下,异氟烷和 TTA-P2 对静息膜电位和细胞输入电阻几乎没有影响。我们提出,异氟烷的临床特性至少部分是通过抑制丘脑 T 电流提供的。