Suppr超能文献

转剪接介导的严重脊髓性肌肉萎缩症小鼠模型的改善。

Trans-splicing-mediated improvement in a severe mouse model of spinal muscular atrophy.

机构信息

Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA.

出版信息

J Neurosci. 2010 Jan 6;30(1):126-30. doi: 10.1523/JNEUROSCI.4489-09.2010.

Abstract

Spinal muscular atrophy is a leading genetic cause of infantile death and occurs in approximately 1/6000 live births. SMA is caused by the loss of Survival Motor Neuron-1 (SMN1), however, all patients retain at least one copy of a nearly identical gene called SMN2. While SMN2 and SMN1 are comprised of identical coding sequences, the majority of SMN2 transcripts are alternatively spliced, encoding a truncated protein that is unstable and nonfunctional. Considerable effort has focused upon modulating the SMN2 alternative splicing event since this would produce more wild-type protein. Recently we reported the development of an optimized trans-splicing system that involved the coexpression of a SMN2 trans-splicing RNA and an antisense RNA that blocks a downstream splice site in SMN2 pre-mRNA. Here, we demonstrate that in vivo delivery of the optimized trans-splicing vector increases an important SMN-dependent activity, snRNP assembly, in disease-relevant tissue in the SMA mouse model. A single injection of the vector into the intracerebral-ventricular space in SMA neonates also lessens the severity of the SMA phenotype in a severe SMA mouse model, extending survival approximately 70%. Collectively, these results provide the first in vivo demonstration that SMN2 trans-splicing leads to a lessening of the severity of the SMA phenotype and provide evidence for the power of this strategy for reprogramming genetic diseases at the pre-mRNA level.

摘要

脊髓性肌萎缩症是婴儿死亡的主要遗传原因,在大约每 6000 例活产儿中就有 1 例发生。SMA 是由于运动神经元存活 1 号(SMN1)的缺失引起的,但所有患者至少保留了一个几乎相同的基因 SMN2 的一个副本。虽然 SMN2 和 SMN1 包含相同的编码序列,但大多数 SMN2 转录本是选择性剪接的,编码一种不稳定且无功能的截断蛋白。人们已经投入了相当大的努力来调节 SMN2 的选择性剪接事件,因为这将产生更多的野生型蛋白。最近,我们报告了一种优化的反式剪接系统的开发,该系统涉及共表达 SMN2 反式剪接 RNA 和一种反义 RNA,该反义 RNA 阻断 SMN2 前体 RNA 中的下游剪接位点。在这里,我们证明了在 SMA 小鼠模型中,体内递送优化的反式剪接载体可增加重要的 SMN 依赖性活性,即 snRNP 组装,在与疾病相关的组织中。在 SMA 新生仔鼠的脑室内单次注射该载体,也可减轻严重 SMA 小鼠模型中 SMA 表型的严重程度,使存活时间延长约 70%。总之,这些结果首次在体内证明了 SMN2 反式剪接可减轻 SMA 表型的严重程度,并为该策略在 pre-mRNA 水平上重新编程遗传疾病的有效性提供了证据。

相似文献

3
Optimization of SMN trans-splicing through the analysis of SMN introns.通过分析 SMN 内含子优化 SMN 外显子剪接。
J Mol Neurosci. 2012 Mar;46(3):459-69. doi: 10.1007/s12031-011-9614-3. Epub 2011 Aug 9.

引用本文的文献

3
RNA exon editing: Splicing the way to treat human diseases.RNA外显子编辑:拼接治疗人类疾病的途径。
Mol Ther Nucleic Acids. 2024 Aug 16;35(3):102311. doi: 10.1016/j.omtn.2024.102311. eCollection 2024 Sep 10.
4
Programmable RNA writing with trans-splicing.通过反式剪接进行可编程RNA编写
bioRxiv. 2024 Feb 1:2024.01.31.578223. doi: 10.1101/2024.01.31.578223.
6
Splicing mutations in the CFTR gene as therapeutic targets.CFTR 基因剪接突变作为治疗靶点。
Gene Ther. 2022 Aug;29(7-8):399-406. doi: 10.1038/s41434-022-00347-0. Epub 2022 Jun 2.
8
RNA-based therapeutics for neurological diseases.基于 RNA 的神经疾病治疗方法。
RNA Biol. 2022;19(1):176-190. doi: 10.1080/15476286.2021.2021650. Epub 2021 Dec 31.
10
Therapeutic applications of trans-splicing.转译拼接的治疗应用。
Br Med Bull. 2020 Dec 15;136(1):4-20. doi: 10.1093/bmb/ldaa028.

本文引用的文献

9
Embryonic motor axon development in the severe SMA mouse.严重脊髓性肌萎缩症小鼠的胚胎运动轴突发育
Hum Mol Genet. 2008 Sep 15;17(18):2900-9. doi: 10.1093/hmg/ddn189. Epub 2008 Jul 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验