Suppr超能文献

通过重复脉冲刺激 rd1 小鼠视网膜神经节细胞的电诱发神经活动。

Electrically-evoked Neural Activities of rd1 Mice Retinal Ganglion Cells by Repetitive Pulse Stimulation.

机构信息

Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju 220-710, Korea.

出版信息

Korean J Physiol Pharmacol. 2009 Dec;13(6):443-8. doi: 10.4196/kjpp.2009.13.6.443. Epub 2009 Dec 31.

Abstract

For successful visual perception by visual prosthesis using electrical stimulation, it is essential to develop an effective stimulation strategy based on understanding of retinal ganglion cell (RGC) responses to electrical stimulation. We studied RGC responses to repetitive electrical stimulation pulses to develop a stimulation strategy using stimulation pulse frequency modulation. Retinal patches of photoreceptor-degenerated retinas from rd1 mice were attached to a planar multi-electrode array (MEA) and RGC spike trains responding to electrical stimulation pulse trains with various pulse frequencies were observed. RGC responses were strongly dependent on inter-pulse interval when it was varied from 500 to 10 ms. Although the evoked spikes were suppressed with increasing pulse rate, the number of evoked spikes were >60% of the maximal responses when the inter-pulse intervals exceeded 100 ms. Based on this, we investigated the modulation of evoked RGC firing rates while increasing the pulse frequency from 1 to 10 pulses per second (or Hz) to deduce the optimal pulse frequency range for modulation of RGC response strength. RGC response strength monotonically and linearly increased within the stimulation frequency of 1~9 Hz. The results suggest that the evoked neural activities of RGCs in degenerated retina can be reliably controlled by pulse frequency modulation, and may be used as a stimulation strategy for visual neural prosthesis.

摘要

为了成功地通过电刺激实现视觉假体的视觉感知,基于对视网膜神经节细胞(RGC)对电刺激反应的理解,开发有效的刺激策略至关重要。我们研究了 RGC 对重复电刺激脉冲的反应,以开发一种使用刺激脉冲频率调制的刺激策略。将来自 rd1 小鼠光感受器退化视网膜的视网膜贴片附着到平面多电极阵列(MEA)上,并观察到对各种脉冲频率的电刺激脉冲串的 RGC 尖峰反应。当脉冲间隔从 500 到 10 毫秒变化时,RGC 反应强烈依赖于脉冲间隔。尽管随着脉冲率的增加,诱发的尖峰被抑制,但当脉冲间隔超过 100 毫秒时,诱发的尖峰数>最大反应的 60%。基于此,我们在将脉冲频率从 1 增加到每秒 10 个脉冲(或 Hz)的同时,研究了诱发 RGC 放电率的调制,以推断出调制 RGC 反应强度的最佳脉冲频率范围。在 1~9 Hz 的刺激频率范围内,RGC 反应强度单调且线性增加。结果表明,退化视网膜中 RGC 的诱发神经活动可以通过脉冲频率调制可靠地控制,并且可以用作视觉神经假体的刺激策略。

相似文献

1
Electrically-evoked Neural Activities of rd1 Mice Retinal Ganglion Cells by Repetitive Pulse Stimulation.
Korean J Physiol Pharmacol. 2009 Dec;13(6):443-8. doi: 10.4196/kjpp.2009.13.6.443. Epub 2009 Dec 31.
4
Correlated Activity in the Degenerate Retina Inhibits Focal Response to Electrical Stimulation.
Front Cell Neurosci. 2022 May 4;16:889663. doi: 10.3389/fncel.2022.889663. eCollection 2022.
6
Comparison of modulation efficiency between normal and degenerated primate retina.
Front Cell Dev Biol. 2024 Jul 31;12:1419007. doi: 10.3389/fcell.2024.1419007. eCollection 2024.
7
Retinal ganglion cell (RGC) responses to different voltage stimulation parameters in rd1 mouse retina.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:6761-4. doi: 10.1109/IEMBS.2010.5625998.
8
Decoding of retinal ganglion cell spike trains evoked by temporally patterned electrical stimulation.
Brain Res. 2010 Aug 12;1348:71-83. doi: 10.1016/j.brainres.2010.06.044. Epub 2010 Jul 1.
9
Retinal ganglion cell responses to voltage and current stimulation in wild-type and rd1 mouse retinas.
J Neural Eng. 2011 Jun;8(3):035003. doi: 10.1088/1741-2560/8/3/035003. Epub 2011 May 18.
10
Optimization of stimulation parameters for epi-retinal implant based on biosafety consideration.
PLoS One. 2020 Jul 22;15(7):e0236176. doi: 10.1371/journal.pone.0236176. eCollection 2020.

引用本文的文献

1
Advanced Brain-on-a-Chip for Wetware Computing: A Review.
Adv Sci (Weinh). 2025 Sep;12(33):e08120. doi: 10.1002/advs.202508120. Epub 2025 Jul 23.
2
Correlated Activity in the Degenerate Retina Inhibits Focal Response to Electrical Stimulation.
Front Cell Neurosci. 2022 May 4;16:889663. doi: 10.3389/fncel.2022.889663. eCollection 2022.
3
The advantage of topographic prominence-adopted filter for the detection of short-latency spikes of retinal ganglion cells.
Korean J Physiol Pharmacol. 2017 Sep;21(5):555-563. doi: 10.4196/kjpp.2017.21.5.555. Epub 2017 Aug 22.
5
Spontaneous Oscillatory Rhythm in Retinal Activities of Two Retinal Degeneration (rd1 and rd10) Mice.
Korean J Physiol Pharmacol. 2011 Dec;15(6):415-22. doi: 10.4196/kjpp.2011.15.6.415. Epub 2011 Dec 27.
6
Frequency and amplitude modulation have different effects on the percepts elicited by retinal stimulation.
Invest Ophthalmol Vis Sci. 2012 Jan 20;53(1):205-14. doi: 10.1167/iovs.11-8401.
7
Encoding visual information in retinal ganglion cells with prosthetic stimulation.
J Neural Eng. 2011 Jun;8(3):035005. doi: 10.1088/1741-2560/8/3/035005. Epub 2011 May 18.

本文引用的文献

2
An in vitro model of a retinal prosthesis.
IEEE Trans Biomed Eng. 2008 Jun;55(6):1744-53. doi: 10.1109/tbme.2008.919126.
3
Functional stability of retinal ganglion cells after degeneration-induced changes in synaptic input.
J Neurosci. 2008 Jun 18;28(25):6526-36. doi: 10.1523/JNEUROSCI.1533-08.2008.
5
The slow wave component of retinal activity in rd/rd mice recorded with a multi-electrode array.
Physiol Meas. 2007 Sep;28(9):1079-88. doi: 10.1088/0967-3334/28/9/009. Epub 2007 Sep 5.
6
Responses of ganglion cells to repetitive electrical stimulation of the retina.
J Neural Eng. 2007 Mar;4(1):S1-6. doi: 10.1088/1741-2560/4/1/S01. Epub 2007 Jan 24.
7
A test microchip for evaluation of hermetic packaging technology for biomedical prosthetic implants.
Conf Proc IEEE Eng Med Biol Soc. 2004;2004:4093-5. doi: 10.1109/IEMBS.2004.1404142.
8
Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays.
J Neurophysiol. 2006 Jun;95(6):3311-27. doi: 10.1152/jn.01168.2005. Epub 2006 Jan 25.
9
A method for generating precise temporal patterns of retinal spiking using prosthetic stimulation.
J Neurophysiol. 2006 Feb;95(2):970-8. doi: 10.1152/jn.00849.2005. Epub 2005 Oct 19.
10
Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrode.
J Neural Eng. 2005 Mar;2(1):S16-21. doi: 10.1088/1741-2560/2/1/003. Epub 2005 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验