Suppr超能文献

Predicting multiple binding modes using a kernel method based on a vector space model molecular descriptor.

作者信息

Burkowski Forbes J, Wong William W L

机构信息

The David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.

出版信息

Int J Comput Biol Drug Des. 2009;2(1):58-80. doi: 10.1504/ijcbdd.2009.027584.

Abstract

We describe the use of our Vector Space Model Molecular Descriptor (VSMMD), based on a Vector Space Model (VSM) that is suitable for kernel studies in Quantitative Structure-Activity Relationship (QSAR) modelling. Our experiments provide convincing comparative empirical evidence that this kernel method can provide sufficient discrimination to predict various biological activities of a molecule with reasonable accuracy. Furthermore, together with a kernel feature space algorithm, experiments also provide convincing empirical evidence that our VSMMD can provide sufficient information to identify different binding modes with high accuracy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验