Suppr超能文献

使用GeneOrder、CoreGenes和CGUG挖掘病原体基因组:基因顺序、共线性和电子蛋白质组。

Data mining pathogen genomes using GeneOrder and CoreGenes and CGUG: gene order, synteny and in silico proteomes.

作者信息

Mahadevan Padmanabhan, King John F, Seto Donald

机构信息

Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA. E-mail:

出版信息

Int J Comput Biol Drug Des. 2009;2(1):100-14. doi: 10.1504/ijcbdd.2009.027586.

Abstract

Sequence databases are growing exponentially due to 'next generation' DNA analysers and applications of these data. Databases include multiple sequences of previously sequenced organisms, particularly ones of consequence to human health. Applications are limited by tools available to mine them, particularly user-friendly tools that are useful for bench researchers. GeneOrder, CoreGenes and CGUG are web-based 'on-the-fly' tools that examine gene order and synteny, as well as proteomes for comparative genomics and for drug discovery and design targets. CoreGenes (CGUG) now allows analysis of genomes ranging up to 1.9 megabases. Many of these small genome bacteria have impacts on human health.

摘要

由于“下一代”DNA分析仪以及这些数据的应用,序列数据库正呈指数级增长。数据库包含先前已测序生物的多个序列,尤其是那些对人类健康有重要影响的序列。其应用受到挖掘这些数据的可用工具的限制,特别是对实验室研究人员有用的用户友好型工具。GeneOrder、CoreGenes和CGUG是基于网络的“即时”工具,可用于检查基因顺序和共线性,以及用于比较基因组学、药物发现和设计靶点的蛋白质组。CoreGenes(CGUG)现在允许分析高达190万个碱基对的基因组。许多这些小基因组细菌对人类健康有影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验