Department of Geosciences, Princeton University, Princeton, NJ, USA.
Geobiology. 2010 Jan;8(1):69-88. doi: 10.1111/j.1472-4669.2009.00224.x.
The diagenetic mineral assemblages in petroleum reservoirs control the formation fluid pH and pCO(2). Anaerobic biodegradation of petroleum is controlled by the transfer of electrons from reduced organic species to inorganic, redox sensitive, aqueous and mineral species in many cases through intermediates such as H(2) and CH(3)COO(-). The terminal electron accepting reactions induce the dissolution or precipitation of the same minerals that control the ambient pH and pCO(2) in petroleum reservoirs. In this study, we develop a model for anaerobic biodegradation of petroleum that couples the production of acetate and H(2) to 'late stage' diagenetic reactions. The model reveals that the principal terminal electron accepting process and electron donor control the type of diagenetic reaction, and that the petroleum biodegradation rate is controlled through thermodynamic restriction by the minimum DeltaG required to support a specific microbial metabolism, the fluid flux and the mineral assemblage. These relationships are illustrated by modeling coupled microbial diagenesis and biodegradation of the Gullfaks oil reservoir. The results indicate that the complete dissolution of albite by acids generated during oil biodegradation and the corresponding elevated pCO(2) seen in the Gullfaks field are best explained by methanogenic respiration coupled to hydrocarbon degradation and that the biodegradation rate is likely controlled by the pCH(4). Biodegradation of Gullfaks oil by a consortium that includes either Fe(3+)-reducing or -reducing bacteria cannot explain the observed diagenetic mineral assemblage or pCO(2). For octane, biodegradation, not water washing, was the principal agent for removal at fluid velocities <20 m Myr(-1).
油藏中的成岩矿物组合控制着地层流体的 pH 值和 pCO2。在许多情况下,石油的厌氧生物降解受电子从还原有机物种转移到无机、氧化还原敏感、水相和矿物物种的控制,这些物种通常通过 H2 和 CH3COO- 等中间产物传递。末端电子接受反应诱导控制油藏环境 pH 值和 pCO2 的相同矿物的溶解或沉淀。在这项研究中,我们开发了一个将乙酸盐和 H2 的产生与“晚期”成岩反应相结合的石油厌氧生物降解模型。该模型表明,主要的末端电子接受过程和电子供体控制着成岩反应的类型,石油生物降解速率受支持特定微生物代谢所需的最小 DeltaG 通过热力学限制、流体通量和矿物组合来控制。通过对古尔福斯油藏微生物成岩作用和生物降解的耦合模型,说明了这些关系。结果表明,油生物降解过程中产生的酸完全溶解钠长石,以及古尔福斯油田观测到的相应升高的 pCO2,可以最好地解释为与烃类降解偶联的甲烷生成呼吸作用,并且生物降解速率可能受 pCH4 控制。包括 Fe(3+)还原菌或-还原菌在内的古尔福斯油生物降解 consortium 不能解释观察到的成岩矿物组合或 pCO2。对于辛烷,生物降解而不是水冲洗是在流速<20 m Myr-1 时去除的主要因素。