Suppr超能文献

分析人乳头瘤病毒自然史数据的边缘和混合效应模型。

Marginal and mixed-effects models in the analysis of human papillomavirus natural history data.

机构信息

Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 1308, Bronx, NY 10461, USA.

出版信息

Cancer Epidemiol Biomarkers Prev. 2010 Jan;19(1):159-69. doi: 10.1158/1055-9965.EPI-09-0546.

Abstract

Human papillomavirus (HPV) natural history has several characteristics that, at least from a statistical perspective, are not often encountered elsewhere in infectious disease and cancer research. There are, for example, multiple HPV types, and infection by each HPV type may be considered separate events. Although concurrent infections are common, the prevalence, incidence, and duration/persistence of each individual HPV can be separately measured. However, repeated measures involving the same subject tend to be correlated. The probability of detecting any given HPV type, for example, is greater among individuals who are currently positive for at least one other HPV type. Serial testing for HPV over time represents a second form of repeated measures. Statistical inferences that fail to take these correlations into account would be invalid. However, methods that do not use all the data would be inefficient. Marginal and mixed-effects models can address these issues but are not frequently used in HPV research. The current study provides an overview of these methods and then uses HPV data from a cohort of HIV-positive women to illustrate how they may be applied, and compare their results. The findings show the greater efficiency of these models compared with standard logistic regression and Cox models. Because mixed-effects models estimate subject-specific associations, they sometimes gave much higher effect estimates than marginal models, which estimate population-averaged associations. Overall, the results show that marginal and mixed-effects models are efficient for studying HPV natural history, but also highlight the importance of understanding how these models differ.

摘要

人乳头瘤病毒(HPV)自然史有几个特点,至少从统计学的角度来看,这在传染病和癌症研究中并不常见。例如,HPV 有多种类型,每一种 HPV 的感染都可以被视为独立的事件。尽管同时感染很常见,但每种 HPV 的流行率、发病率和持续时间/持久性都可以单独测量。然而,涉及同一主体的重复测量往往是相关的。例如,在至少有另一种 HPV 阳性的个体中,检测到任何特定 HPV 类型的概率更高。随着时间的推移对 HPV 的连续检测代表了另一种重复测量形式。如果统计推断没有考虑到这些相关性,那么它们将是无效的。但是,不使用所有数据的方法将效率低下。边际和混合效应模型可以解决这些问题,但在 HPV 研究中并不常用。本研究概述了这些方法,然后使用来自 HIV 阳性女性队列的 HPV 数据来说明如何应用这些方法,并比较它们的结果。研究结果表明,与标准逻辑回归和 Cox 模型相比,这些模型的效率更高。由于混合效应模型估计个体特定的关联,它们有时会给出比边际模型更高的效应估计,边际模型估计的是人群平均关联。总体而言,研究结果表明,边际和混合效应模型对于研究 HPV 自然史是有效的,但也强调了理解这些模型之间差异的重要性。

相似文献

5
Prevalence and risk factors for human papillomavirus DNA in cervical cytology.宫颈细胞学中人乳头瘤病毒 DNA 的流行率和危险因素。
Eur J Obstet Gynecol Reprod Biol. 2011 Nov;159(1):168-71. doi: 10.1016/j.ejogrb.2011.06.021. Epub 2011 Jul 18.

引用本文的文献

本文引用的文献

3
Human papillomaviruses.人乳头瘤病毒
IARC Monogr Eval Carcinog Risks Hum. 2007;90:1-636.
9
Sample size and power calculations with correlated binary data.具有相关二元数据的样本量和效能计算。
Control Clin Trials. 2001 Jun;22(3):211-27. doi: 10.1016/s0197-2456(01)00131-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验