Suppr超能文献

使用RNA字符串核预测小干扰RNA(SiRNA)的沉默效果

SiRNA silencing efficacy prediction using the RNA string kernel.

作者信息

Qiu Shibin, Lane Terran

机构信息

Pathwork Diagnostics Inc., 1196 Borregas Ave., Sunnyvale CA, 94089, USA.

出版信息

Int J Comput Biol Drug Des. 2008;1(2):103-21. doi: 10.1504/ijcbdd.2008.020189.

Abstract

While most existing string kernels are developed for general purpose sequences and have been applied to text and protein classifications, the RNA string kernel is particularly designed to model mismatches, G-U wobbles, and bulges of RNA biology. We adapt the RNA kernel to compute the similarity of the short interfering RNAs (siRNAs), initiators of RNA interference, and use it in support vector regression to predict the siRNA silencing efficacy treated as a continuous variable. Empirical results on biological data sets demonstrate that the RNA string kernel performed favourably. In addition, it is simple to implement and fast to compute.

摘要

虽然大多数现有的字符串核是为通用序列开发的,并已应用于文本和蛋白质分类,但RNA字符串核是专门为模拟RNA生物学中的错配、G-U摆动和凸起而设计的。我们采用RNA核来计算小干扰RNA(siRNA,RNA干扰的引发剂)的相似性,并将其用于支持向量回归,以预测被视为连续变量的siRNA沉默效率。在生物数据集上的实证结果表明,RNA字符串核表现良好。此外,它易于实现且计算速度快。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验