Suppr超能文献

一种多内核支持向量回归框架及其在siRNA疗效预测中的应用。

A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction.

作者信息

Qiu Shibin, Lane Terran

机构信息

Pathwork Diagnostics, Inc, Sunnyvale, Sunnyvale, CA 94089, USA.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2009 Apr-Jun;6(2):190-9. doi: 10.1109/TCBB.2008.139.

Abstract

The cell defense mechanism of RNA interference has applications in gene function analysis and promising potentials in human disease therapy. To effectively silence a target gene, it is desirable to select appropriate initiator siRNA molecules having satisfactory silencing capabilities. Computational prediction for silencing efficacy of siRNAs can assist this screening process before using them in biological experiments. String kernel functions, which operate directly on the string objects representing siRNAs and target mRNAs, have been applied to support vector regression for the prediction and improved accuracy over numerical kernels in multidimensional vector spaces constructed from descriptors of siRNA design rules. To fully utilize information provided by string and numerical data, we propose to unify the two in a kernel feature space by devising a multiple kernel regression framework where a linear combination of the kernels is used. We formulate the multiple kernel learning into a quadratically constrained quadratic programming (QCQP) problem, which although yields global optimal solution, is computationally demanding and requires a commercial solver package. We further propose three heuristics based on the principle of kernel-target alignment and predictive accuracy. Empirical results demonstrate that multiple kernel regression can improve accuracy, decrease model complexity by reducing the number of support vectors, and speed up computational performance dramatically. In addition, multiple kernel regression evaluates the importance of constituent kernels, which for the siRNA efficacy prediction problem, compares the relative significance of the design rules. Finally, we give insights into the multiple kernel regression mechanism and point out possible extensions.

摘要

RNA干扰的细胞防御机制在基因功能分析中具有应用价值,并且在人类疾病治疗方面有着广阔的潜力。为了有效地沉默靶基因,需要选择具有令人满意沉默能力的合适起始siRNA分子。在将siRNA用于生物学实验之前,对其沉默效果进行计算预测可以辅助这一筛选过程。字符串核函数直接作用于代表siRNA和靶mRNA的字符串对象,已被应用于支持向量回归进行预测,并且在由siRNA设计规则描述符构建的多维向量空间中比数值核具有更高的准确性。为了充分利用字符串和数值数据提供的信息,我们建议通过设计一个使用核的线性组合的多核回归框架,在核特征空间中将两者统一起来。我们将多核学习公式化为一个二次约束二次规划(QCQP)问题,虽然该问题能产生全局最优解,但计算量很大,并且需要一个商业求解器包。我们进一步基于核-目标对齐和预测准确性的原则提出了三种启发式方法。实证结果表明,多核回归可以提高准确性,通过减少支持向量的数量降低模型复杂度,并显著加快计算性能。此外,多核回归评估组成核的重要性,对于siRNA功效预测问题,这比较了设计规则的相对重要性。最后,我们深入探讨了多核回归机制并指出了可能的扩展方向。

相似文献

1
A framework for multiple kernel support vector regression and its applications to siRNA efficacy prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2009 Apr-Jun;6(2):190-9. doi: 10.1109/TCBB.2008.139.
2
SiRNA silencing efficacy prediction using the RNA string kernel.
Int J Comput Biol Drug Des. 2008;1(2):103-21. doi: 10.1504/ijcbdd.2008.020189.
3
Prediction of siRNA functionality using generalized string kernel and support vector machine.
FEBS Lett. 2005 May 23;579(13):2878-82. doi: 10.1016/j.febslet.2005.04.045.
5
L2-norm multiple kernel learning and its application to biomedical data fusion.
BMC Bioinformatics. 2010 Jun 8;11:309. doi: 10.1186/1471-2105-11-309.
6
In silico target-specific siRNA design based on domain transfer in heterogeneous data.
PLoS One. 2012;7(12):e50697. doi: 10.1371/journal.pone.0050697. Epub 2012 Dec 21.
7
RFRCDB-siRNA: improved design of siRNAs by random forest regression model coupled with database searching.
Comput Methods Programs Biomed. 2007 Sep;87(3):230-8. doi: 10.1016/j.cmpb.2007.06.001. Epub 2007 Jul 17.
8
Demonstration of two novel methods for predicting functional siRNA efficiency.
BMC Bioinformatics. 2006 May 29;7:271. doi: 10.1186/1471-2105-7-271.
9
Efficient hyperkernel learning using second-order cone programming.
IEEE Trans Neural Netw. 2006 Jan;17(1):48-58. doi: 10.1109/TNN.2005.860848.
10
More complete gene silencing by fewer siRNAs: transparent optimized design and biophysical signature.
Nucleic Acids Res. 2007;35(2):433-40. doi: 10.1093/nar/gkl1065. Epub 2006 Dec 14.

引用本文的文献

2
A novel embedded kernel CNN-PCFF algorithm for breast cancer pathological image classification.
Sci Rep. 2024 Oct 10;14(1):23758. doi: 10.1038/s41598-024-74025-z.
4
Transfer Learning with Kernel Methods.
Nat Commun. 2023 Sep 9;14(1):5570. doi: 10.1038/s41467-023-41215-8.
5
Asymmetric trichotomous partitioning overcomes dataset limitations in building machine learning models for predicting siRNA efficacy.
Mol Ther Nucleic Acids. 2023 Jun 14;33:93-109. doi: 10.1016/j.omtn.2023.06.010. eCollection 2023 Sep 12.
7
Efficient Multiple Kernel Learning Algorithms Using Low-Rank Representation.
Comput Intell Neurosci. 2017;2017:3678487. doi: 10.1155/2017/3678487. Epub 2017 Aug 22.
10
A multiple kernel learning algorithm for drug-target interaction prediction.
BMC Bioinformatics. 2016 Jan 22;17:46. doi: 10.1186/s12859-016-0890-3.

本文引用的文献

1
RNA string kernels for RNAi off-target evaluation.
Int J Bioinform Res Appl. 2006;2(2):132-46. doi: 10.1504/IJBRA.2006.009764.
2
An accurate and interpretable model for siRNA efficacy prediction.
BMC Bioinformatics. 2006 Nov 30;7:520. doi: 10.1186/1471-2105-7-520.
3
On the art of identifying effective and specific siRNAs.
Nat Methods. 2006 Sep;3(9):670-6. doi: 10.1038/nmeth911.
4
Demonstration of two novel methods for predicting functional siRNA efficiency.
BMC Bioinformatics. 2006 May 29;7:271. doi: 10.1186/1471-2105-7-271.
5
Prediction of siRNA knockdown efficiency using artificial neural network models.
Biochem Biophys Res Commun. 2005 Oct 21;336(2):723-8. doi: 10.1016/j.bbrc.2005.08.147.
6
Design of a genome-wide siRNA library using an artificial neural network.
Nat Biotechnol. 2005 Aug;23(8):995-1001. doi: 10.1038/nbt1118. Epub 2005 Jul 17.
7
Sequence characteristics of functional siRNAs.
RNA. 2005 Jun;11(6):864-72. doi: 10.1261/rna.7275905.
8
Prediction of siRNA functionality using generalized string kernel and support vector machine.
FEBS Lett. 2005 May 23;579(13):2878-82. doi: 10.1016/j.febslet.2005.04.045.
9
A computational study of off-target effects of RNA interference.
Nucleic Acids Res. 2005 Mar 30;33(6):1834-47. doi: 10.1093/nar/gki324. Print 2005.
10
Hopes rise for RNA therapy as mouse study hits target.
Nature. 2004 Nov 11;432(7014):136. doi: 10.1038/432136b.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验