Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy.
Acc Chem Res. 2010 Apr 20;43(4):541-50. doi: 10.1021/ar900247p.
In microelectronics and biology, many fundamental processes involve the exchange of charges between small objects, such as nanocrystals in photovoltaic blends or individual proteins in photosynthetic reactions. Because these nanoscale electronic processes strongly depend on the structure of the electroactive assemblies, a detailed understanding of these phenomena requires unraveling the relationship between the structure of the nano-object and its electronic function. Because of the fragility of the structures involved and the dynamic variance of the electric potential of each nanostructure during the charge generation and transport processes, understanding this structure-function relationship represents a great challenge. This Account discusses how our group and others have exploited scanning probe microscopy based approaches beyond imaging, particularly Kelvin probe force microscopy (KPFM), to map the potential of different nanostructures with a spatial and voltage resolution of a few nanometers and millivolts, respectively. We describe in detail how these techniques can provide researchers several types of chemical information. First, KPFM allows researchers to visualize the photogeneration and splitting of several unitary charges between well-defined nano-objects having complementary electron-acceptor and -donor properties. In addition, this method maps charge injection and transport in thin layers of polycrystalline materials. Finally, KPFM can monitor the activity of immobilized chemical components of natural photosynthetic systems. In particular, researchers can use KPFM to measure the electric potential without physical contact between the tip and the nanostructure studied. These measurements exploit long-range electrostatic interactions between the scanning probe and the sample, which scale with the square of the probe-sample distance, d. While allowing minimal perturbation, these long-range interactions limit the resolution attainable in the measurement of potentials. Although the spatial resolution of KPFM is on the nanometer scale, it is inferior to that of other related techniques such as atomic force or scanning tunneling microscopy, which are based on short-range interactions scaling as d(-7) or e(-d), respectively. To overcome this problem, we have recently devised deconvolution procedures that allow us to quantify the electric potential of a nano-object removing the artifacts due to its nanometric size.
在微电子学和生物学中,许多基本过程都涉及到小物体之间的电荷交换,例如光伏混合物中的纳米晶体或光合作用反应中的单个蛋白质。由于这些纳米尺度的电子过程强烈依赖于电活性组装体的结构,因此对这些现象的深入了解需要揭示纳米物体的结构与其电子功能之间的关系。由于所涉及的结构的脆弱性以及在电荷产生和输运过程中每个纳米结构的电势的动态变化,理解这种结构-功能关系是一个巨大的挑战。本账户讨论了我们小组和其他小组如何利用扫描探针显微镜技术(特别是 Kelvin 探针力显微镜 (KPFM))来超越成像,以分别以几纳米和毫伏的空间和电压分辨率来绘制不同纳米结构的电势。我们详细描述了这些技术如何为研究人员提供几种类型的化学信息。首先,KPFM 允许研究人员可视化具有互补电子受体和供体性质的明确定义的纳米物体之间几个单位电荷的光生和分裂。此外,该方法绘制了多晶材料薄层中的电荷注入和传输。最后,KPFM 可以监测固定化天然光合作用系统化学组分的活性。特别是,研究人员可以使用 KPFM 在不与研究的纳米结构物理接触的情况下测量电势。这些测量利用了扫描探针和样品之间的长程静电相互作用,该相互作用与探针-样品距离 d 的平方成正比。虽然允许最小的干扰,但这些长程相互作用限制了在测量电势时可达到的分辨率。尽管 KPFM 的空间分辨率在纳米尺度上,但它不如其他相关技术(例如原子力或扫描隧道显微镜)优越,后两者基于分别与 d(-7)或 e(-d)成正比的短程相互作用。为了解决这个问题,我们最近设计了去卷积程序,这些程序允许我们通过去除由于纳米尺寸而产生的伪影来量化纳米物体的电势。