Perceptual Interfaces and Reality Laboratory, Institute for Advanced Computer Studies, University of Maryland, College Park, Maryland 20742, USA.
J Acoust Soc Am. 2010 Jan;127(1):370-86. doi: 10.1121/1.3257598.
The head-related transfer function (HRTF) is computed using the fast multipole accelerated boundary element method. For efficiency, the HRTF is computed using the reciprocity principle by placing a source at the ear and computing its field. Analysis is presented to modify the boundary value problem accordingly. To compute the HRTF corresponding to different ranges via a single computation, a compact and accurate representation of the HRTF, termed the spherical spectrum, is developed. Computations are reduced to a two stage process, the computation of the spherical spectrum and a subsequent evaluation of the HRTF. This representation allows easy interpolation and range extrapolation of HRTFs. HRTF computations are performed for the range of audible frequencies up to 20 kHz for several models including a sphere, human head models [the Neumann KU-100 ("Fritz") and the Knowles KEMAR ("Kemar") manikins], and head-and-torso model (the Kemar manikin). Comparisons between the different cases are provided. Comparisons with the computational data of other authors and available experimental data are conducted and show satisfactory agreement for the frequencies for which reliable experimental data are available. Results show that, given a good mesh, it is feasible to compute the HRTF over the full audible range on a regular personal computer.
头相关传递函数 (HRTF) 使用快速多极加速边界元法进行计算。为了提高效率,通过在耳朵处放置声源并计算其场,利用互易原理计算 HRTF。相应地提出了分析来修改边界值问题。为了通过单次计算计算不同范围的 HRTF,开发了一种紧凑且准确的 HRTF 表示形式,称为球面谱。计算减少为两个阶段的过程,即球面谱的计算和随后的 HRTF 评估。这种表示形式允许轻松插值和范围外推 HRTF。针对包括球体、人类头部模型[Neumann KU-100("Fritz")和 Knowles KEMAR("Kemar")人体模型]和头部和躯干模型(Kemar 人体模型)在内的几种模型,计算了可听频率范围内高达 20 kHz 的 HRTF。提供了不同情况之间的比较。与其他作者的计算数据和可用的实验数据进行了比较,并显示出对于具有可靠实验数据的频率具有令人满意的一致性。结果表明,在给定良好的网格的情况下,在普通个人计算机上计算整个可听范围内的 HRTF 是可行的。