大肠杆菌 O157:H7 暴露于生菜叶裂解物的转录组分析。

Transcriptome analysis of Escherichia coli O157:H7 exposed to lysates of lettuce leaves.

机构信息

Produce Safety and Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA 94710, USA.

出版信息

Appl Environ Microbiol. 2010 Mar;76(5):1375-87. doi: 10.1128/AEM.02461-09. Epub 2010 Jan 8.

Abstract

Harvesting and processing of leafy greens inherently cause plant tissue damage, creating niches on leaves that human pathogens can exploit. We previously demonstrated that Escherichia coli O157:H7 (EcO157) multiplies more rapidly on shredded leaves than on intact leaves (M. T. Brandl, Appl. Environ. Microbiol. 74:5285-5289, 2008). To investigate how EcO157 cells adapt to physicochemical conditions in injured lettuce tissue, we used microarray-based whole-genome transcriptional profiling to characterize gene expression patterns in EcO157 after 15- and 30-min exposures to romaine lettuce lysates. Multiple carbohydrate transport systems that have a role in the utilization of substrates known to be prevalent in plant cells were activated in EcO157. This indicates the availability to the human pathogen of a variety of carbohydrates released from injured plant cells that may promote its extensive growth in leaf lysates and, thus, in wounded leaf tissue. In addition, microarray analysis revealed the upregulation of numerous genes associated with EcO157 attachment and virulence, with oxidative stress and antimicrobial resistance (including the OxyR and Mar regulons), with detoxification of noxious compounds, and with DNA repair. Upregulation of oxidative stress and antimicrobial resistance genes in EcO157 was confirmed on shredded lettuce by quantitative reverse transcription-PCR. We further demonstrate that this adaptation to stress conditions imparts the pathogen with increased resistance to hydrogen peroxide and calcium hypochlorite. This enhanced resistance to chlorinated sanitizers combined with increased expression of virulence determinants and multiplication at sites of injury on the leaves may help explain the association of processed leafy greens with outbreaks of EcO157.

摘要

叶菜类在收获和加工过程中不可避免地会造成植物组织损伤,在叶片上形成有利于人类病原体定植的小生境。我们之前的研究表明,大肠杆菌 O157:H7(EcO157)在切碎的叶片上比完整叶片上繁殖得更快(M. T. Brandl, Appl. Environ. Microbiol. 74:5285-5289, 2008)。为了研究 EcO157 细胞如何适应受伤生菜组织中的理化条件,我们使用基于微阵列的全基因组转录谱分析来描述 EcO157 在 15 和 30 分钟暴露于罗马生菜匀浆后的基因表达模式。在 EcO157 中,多个与碳水化合物运输系统相关的基因被激活,这些系统在利用植物细胞中普遍存在的已知底物方面发挥作用。这表明,受伤植物细胞释放的各种碳水化合物可被人类病原体利用,从而促进其在叶匀浆中的大量生长,进而促进其在受伤叶片组织中的生长。此外,微阵列分析还揭示了与 EcO157 附着和毒力相关的大量基因的上调,包括与氧化应激和抗菌药物耐药性相关的基因(包括 OxyR 和 Mar 调控子)、有害化合物的解毒以及 DNA 修复。通过定量逆转录 PCR 进一步证实了 EcO157 在切碎的生菜上氧化应激和抗菌药物耐药性基因的上调。我们还证明,这种对胁迫条件的适应使病原体对过氧化氢和次氯酸钙的抗性增强。这种增强的对氯化消毒剂的抗性与毒力决定因子的表达增加以及叶片受伤部位的增殖相结合,可能有助于解释加工叶菜与 EcO157 爆发之间的关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索