Suppr超能文献

增强构象空间采样可提高蛋白质中化学位移的预测能力。

Enhanced conformational space sampling improves the prediction of chemical shifts in proteins.

机构信息

Department of Chemistry and Biochemistry, University of California, San Diego, USA.

出版信息

J Am Chem Soc. 2010 Feb 3;132(4):1220-1. doi: 10.1021/ja9093692.

Abstract

A biased-potential molecular dynamics simulation method, accelerated molecular dynamics (AMD), was combined with the chemical shift prediction algorithm SHIFTX to calculate (1)H(N), (15)N, (13)Calpha, (13)Cbeta, and (13)C' chemical shifts of the ankyrin repeat protein IkappaBalpha (residues 67-206), the primary inhibitor of nuclear factor kappa-B (NF-kappaB). Free-energy-weighted molecular ensembles were generated over a range of acceleration levels, affording systematic enhancement of the conformational space sampling of the protein. We have found that the predicted chemical shifts, particularly for the (15)N, (13)Calpha, and (13)Cbeta nuclei, improve substantially with enhanced conformational space sampling up to an optimal acceleration level. Significant improvement in the predicted chemical shift data coincides with those regions of the protein that exhibit backbone dynamics on longer time scales. Interestingly, the optimal acceleration level for reproduction of the chemical shift data has previously been shown to best reproduce the experimental residual dipolar coupling (RDC) data for this system, as both chemical shift data and RDCs report on an ensemble and time average in the millisecond range.

摘要

一种有偏向势的分子动力学模拟方法,加速分子动力学(AMD),与化学位移预测算法 SHIFTX 相结合,用于计算核因子 kappa-B(NF-kappaB)主要抑制剂 ankryn 重复蛋白 IkappaBalpha(残基 67-206)的(1)H(N)、(15)N、(13)Calpha、(13)Cbeta 和(13)C'化学位移。在一系列加速水平上生成自由能加权分子集合,从而系统地增强蛋白质构象空间的采样。我们发现,预测的化学位移,特别是(15)N、(13)Calpha 和(13)Cbeta 核,随着构象空间采样的增强而显著改善,直到达到最佳加速水平。预测化学位移数据的显著改善与那些在更长时间尺度上表现出骨架动力学的蛋白质区域相吻合。有趣的是,以前已经表明,对于该系统,最佳的加速水平可最佳重现实验残余偶极耦合(RDC)数据,因为化学位移数据和 RDC 都在毫秒范围内报告关于集合和时间平均值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d496/2812018/b9484816cd56/ja-2009-093692_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验