Suppr超能文献

利用高精度生物剂量测定方法提出大规模辐射事件的分诊类别。

Proposed triage categories for large-scale radiation incidents using high-accuracy biodosimetry methods.

机构信息

New England Center for Emergency Preparedness, Dartmouth Medical School, Hanover, NH 03756, USA.

出版信息

Health Phys. 2010 Feb;98(2):136-44. doi: 10.1097/HP.0b013e3181b2840b.

Abstract

A catastrophic event such as a nuclear device detonation in a major U.S. city would cause a mass casualty with millions affected. Such a disaster would require screening to accurately and effectively identify patients likely to develop acute radiation syndrome (ARS). A primary function of such screening is to sort the unaffected, or worried-well, from those patients who will truly become symptomatic. This paper reviews the current capability of high-accuracy biodosimetry methods as screening tools for populations and reviews the current triage and medical guidelines for diagnosing and managing ARS. This paper proposes that current triage categories, which broadly categorize patients by likelihood of survival based on current symptoms, be replaced with new triage categories that use high-accuracy biodosimetry methods. Using accurate whole-body exposure dose assessment to predict ARS symptoms and subsyndromes, clinical decision-makers can designate the appropriate care setting, initiate treatment and therapies, and best allocate limited clinical resources, facilitating mass-casualty care following a nuclear disaster.

摘要

如果美国主要城市发生核装置爆炸等灾难性事件,将造成数百万人受到影响的大量伤亡。这种灾难需要进行筛选,以准确有效地识别可能发展为急性辐射综合征 (ARS) 的患者。这种筛选的主要功能是将未受影响的或担心自己受到影响的人群与真正出现症状的患者区分开来。本文回顾了高精度生物剂量测定方法作为人群筛选工具的现有能力,并回顾了目前用于诊断和管理 ARS 的分诊和医疗指南。本文提出,目前根据当前症状按生存可能性对患者进行分类的分诊类别,应改为使用高精度生物剂量测定方法的新分诊类别。使用准确的全身暴露剂量评估来预测 ARS 症状和亚综合征,临床决策者可以指定适当的护理环境,开始治疗和疗法,并最佳分配有限的临床资源,为核灾难后的大规模伤亡护理提供便利。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验