Suppr超能文献

在微光流控芯片上对单颗粒进行超低功率捕获和荧光检测。

Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.

机构信息

School of Engineering, University of CA Santa Cruz, Santa Cruz, CA 95064, USA.

出版信息

Lab Chip. 2010 Jan 21;10(2):189-94. doi: 10.1039/b915750f. Epub 2009 Nov 16.

Abstract

The development of on-chip methods to manipulate particles is receiving rapidly increasing attention. All-optical traps offer numerous advantages, but are plagued by large required power levels on the order of hundreds of milliwatts and the inability to act exclusively on individual particles. Here, we demonstrate a fully integrated electro-optical trap for single particles with optical excitation power levels that are five orders of magnitude lower than in conventional optical force traps. The trap is based on spatio-temporal light modulation that is implemented using networks of antiresonant reflecting optical waveguides. We demonstrate the combination of on-chip trapping and fluorescence detection of single microorganisms by studying the photobleaching dynamics of stained DNA in E. coli bacteria. The favorable size scaling facilitates the trapping of single nanoparticles on integrated optofluidic chips.

摘要

用于操控粒子的片上方法的发展受到了越来越多的关注。全光阱具有许多优点,但存在所需功率水平高(数百毫瓦)和无法专门作用于单个粒子的问题。在这里,我们展示了一种完全集成的用于单个粒子的电光陷阱,其光学激发功率水平比传统的光力学阱低五个数量级。该陷阱基于时空光调制,通过使用反共振反射光学波导网络来实现。我们通过研究染色 DNA 在大肠杆菌中的光漂白动力学,演示了片上捕获和单个微生物荧光检测的结合。有利的尺寸缩放便于在集成的光流体芯片上捕获单个纳米粒子。

相似文献

1
Ultralow power trapping and fluorescence detection of single particles on an optofluidic chip.
Lab Chip. 2010 Jan 21;10(2):189-94. doi: 10.1039/b915750f. Epub 2009 Nov 16.
2
Multi-mode mitigation in an optofluidic chip for particle manipulation and sensing.
Opt Express. 2009 Dec 21;17(26):24342-8. doi: 10.1364/OE.17.024342.
3
Planar optofluidic chip for single particle detection, manipulation, and analysis.
Lab Chip. 2007 Sep;7(9):1171-5. doi: 10.1039/b708861b. Epub 2007 Jun 27.
4
Selective trapping and manipulation of microscale objects using mobile microvortices.
Nano Lett. 2012 Jan 11;12(1):156-60. doi: 10.1021/nl2032487. Epub 2011 Dec 1.
5
Single-molecule detection sensitivity using planar integrated optics on a chip.
Opt Lett. 2006 Jul 15;31(14):2136-8. doi: 10.1364/ol.31.002136.
6
Loss-based optical trap for on-chip particle analysis.
Lab Chip. 2009 Aug 7;9(15):2212-6. doi: 10.1039/b900555b. Epub 2009 May 11.
7
Analysis of integrated optofluidic lab-on-a-chip fluorescence biosensor based on transmittance of light through a fluidic gap.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:30-4. doi: 10.1109/IEMBS.2011.6089889.
8
Counter-propagating optical trapping system for size and refractive index measurement of microparticles.
Biosens Bioelectron. 2006 Jan 15;21(7):1029-36. doi: 10.1016/j.bios.2005.03.011. Epub 2005 Apr 22.
9
Integration of plasmonic trapping in a microfluidic environment.
Opt Express. 2009 Apr 13;17(8):6018-24. doi: 10.1364/oe.17.006018.
10
Optical chromatography using a photonic crystal fiber with on-chip fluorescence excitation.
Opt Express. 2010 Mar 15;18(6):6396-407. doi: 10.1364/OE.18.006396.

引用本文的文献

1
Constrained Volume Micro- and Nanoparticle Collection Methods in Microfluidic Systems.
Micromachines (Basel). 2024 May 25;15(6):699. doi: 10.3390/mi15060699.
3
A Critical Review on the Sensing, Control, and Manipulation of Single Molecules on Optofluidic Devices.
Micromachines (Basel). 2022 Jun 18;13(6):968. doi: 10.3390/mi13060968.
4
Recent advances in integrated solid-state nanopore sensors.
Lab Chip. 2021 Aug 21;21(16):3030-3052. doi: 10.1039/d1lc00294e. Epub 2021 Jun 17.
5
On demand delivery and analysis of single molecules on a programmable nanopore-optofluidic device.
Nat Commun. 2019 Aug 16;10(1):3712. doi: 10.1038/s41467-019-11723-7.
6
Axial electrokinetic trapping of anisotropic particles.
Sci Rep. 2019 Feb 26;9(1):2806. doi: 10.1038/s41598-019-39224-z.
7
8
Optofluidic bioanalysis: fundamentals and applications.
Nanophotonics. 2017 Jul;6(4):647-661. doi: 10.1515/nanoph-2016-0156. Epub 2017 Mar 16.
10
Signal-to-noise Enhancement in Optical Detection of Single Viruses with Multi-spot Excitation.
IEEE J Sel Top Quantum Electron. 2016 Jul-Aug;22(4). doi: 10.1109/JSTQE.2015.2503321. Epub 2016 Mar 21.

本文引用的文献

1
Optofluidic waveguides: I. Concepts and implementations.
Microfluid Nanofluidics. 2008 Jan 1;4(1-2):3-16. doi: 10.1007/s10404-007-0199-7.
2
Fast low-cost digital lock-in.
Appl Opt. 1977 May 1;16(5):1163-5. doi: 10.1364/AO.16.001163.
3
Observation of a single-beam gradient force optical trap for dielectric particles.
Opt Lett. 1986 May 1;11(5):288. doi: 10.1364/ol.11.000288.
4
Loss-based optical trap for on-chip particle analysis.
Lab Chip. 2009 Aug 7;9(15):2212-6. doi: 10.1039/b900555b. Epub 2009 May 11.
5
Optofluidic trapping and transport on solid core waveguides within a microfluidic device.
Opt Express. 2007 Oct 29;15(22):14322-34. doi: 10.1364/oe.15.014322.
6
Fluctuations in closed-loop fluorescent particle tracking.
Opt Express. 2007 Jun 11;15(12):7752-73. doi: 10.1364/oe.15.007752.
7
Tracking-FCS: Fluorescence correlation spectroscopy of individual particles.
Opt Express. 2005 Oct 3;13(20):8069-82. doi: 10.1364/opex.13.008069.
8
Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.
Nature. 2009 Jan 1;457(7225):71-5. doi: 10.1038/nature07593.
9
Controlling Brownian motion of single protein molecules and single fluorophores in aqueous buffer.
Opt Express. 2008 May 12;16(10):6941-56. doi: 10.1364/oe.16.006941.
10
Integrated monolithic optical manipulation.
Lab Chip. 2006 Sep;6(9):1122-4. doi: 10.1039/b605237a. Epub 2006 Jul 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验