Department of Medical Genetics, Folkhälsan Institute of Genetics, University of Helsinki, 00014 Helsinki, Finland.
Acta Neuropathol. 2010 Apr;119(4):465-79. doi: 10.1007/s00401-010-0637-6. Epub 2010 Jan 12.
Aberrant transcription and mRNA processing of multiple genes due to RNA-mediated toxic gain-of-function has been suggested to cause the complex phenotype in myotonic dystrophies type 1 and 2 (DM1 and DM2). However, the molecular basis of muscle weakness and wasting and the different pattern of muscle involvement in DM1 and DM2 are not well understood. We have analyzed the mRNA expression of genes encoding muscle-specific proteins and transcription factors by microarray profiling and studied selected genes for abnormal splicing. A subset of the abnormally regulated genes was further analyzed at the protein level. TNNT3 and LDB3 showed abnormal splicing with significant differences in proportions between DM2 and DM1. The differential abnormal splicing patterns for TNNT3 and LDB3 appeared more pronounced in DM2 relative to DM1 and are among the first molecular differences reported between the two diseases. In addition to these specific differences, the majority of the analyzed genes showed an overall increased expression at the mRNA level. In particular, there was a more global abnormality of all different myosin isoforms in both DM1 and DM2 with increased transcript levels and a differential pattern of protein expression. Atrophic fibers in DM2 patients expressed only the fast myosin isoform, while in DM1 patients they co-expressed fast and slow isoforms. However, there was no increase of total myosin protein levels, suggesting that aberrant protein translation and/or turnover may also be involved.
由于 RNA 介导的毒性获得性功能,导致多个基因的转录和 mRNA 加工异常,这被认为是导致 1 型和 2 型肌强直性营养不良(DM1 和 DM2)复杂表型的原因。然而,肌肉无力和消瘦的分子基础以及 DM1 和 DM2 中不同的肌肉受累模式尚不清楚。我们通过微阵列分析分析了编码肌肉特异性蛋白和转录因子的基因的 mRNA 表达,并研究了选定基因的异常剪接。一组异常调节的基因在蛋白质水平上进一步进行了分析。TNNT3 和 LDB3 显示出异常剪接,DM2 与 DM1 之间的比例有显著差异。与 DM1 相比,TNNT3 和 LDB3 的差异异常剪接模式在 DM2 中更为明显,这是两种疾病之间报告的第一批分子差异之一。除了这些特定差异外,大多数分析的基因在 mRNA 水平上表现出总体表达增加。特别是在 DM1 和 DM2 中,所有不同的肌球蛋白同工型都存在更全面的异常,转录本水平增加,蛋白表达模式也存在差异。DM2 患者的萎缩纤维仅表达快速肌球蛋白同工型,而 DM1 患者则同时表达快速和慢速同工型。然而,总肌球蛋白蛋白水平没有增加,这表明异常的蛋白翻译和/或周转率也可能参与其中。