Department of Computational Landscape Ecology, UFZ, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318, Leipzig, Germany.
Environ Monit Assess. 2010 Dec;171(1-4):513-27. doi: 10.1007/s10661-009-1296-8. Epub 2010 Jan 13.
Model-based predictions of the impact of land management practices on nutrient loading require measured nutrient flux data for model calibration and evaluation. Consequently, uncertainties in the monitoring data resulting from sample collection and load estimation methods influence the calibration, and thus, the parameter settings that affect the modeling results. To investigate this influence, we compared three different time-based sampling strategies and four different load estimation methods for model calibration and compared the results. For our study, we used the river basin model Soil and Water Assessment Tool on the intensively managed loess-dominated Parthe watershed (315 km(2)) in Central Germany. The results show that nitrate-N load estimations differ considerably depending on sampling strategy, load estimation method, and period of interest. Within our study period, the annual nitrate-N load estimation values for the daily composite data set have the lowest ranges (between 9.8% and 15.7% maximum deviations related to the mean value of all applied methods). By contrast, annual estimation results for the submonthly and the monthly data set vary in greater ranges (between 24.9% and 67.7%). To show differences between the sampling strategies, we calculated the percentage deviation of mean load estimations of submonthly and monthly data sets as related to the mean estimation value of the composite data set. For nitrate-N, the maximum deviation is 64.5% for the submonthly data set in the year 2000. We used average monthly nitrate-N loads of the daily composite data set to calibrate the model to achieve satisfactory simulation results [Nash-Sutcliffe efficiency (NSE) 0.52]. Using the same parameter settings with submonthly and monthly data set, the NSE dropped to 0.42 and 0.31, respectively. Considering the different results from the monitoring strategy and the load estimation method, we recommend both the implementation of optimized monitoring programs and the use of multiple load estimation methods to improve water quality characterization and provide appropriate model calibration and evaluation data.
基于模型的土地管理实践对养分加载影响的预测需要测量养分通量数据进行模型校准和评估。因此,监测数据中由于采样和负荷估算方法导致的不确定性会影响校准,从而影响建模结果的参数设置。为了研究这种影响,我们比较了三种不同的基于时间的采样策略和四种不同的负荷估算方法进行模型校准,并比较了结果。在我们的研究中,我们使用了集中管理的黄土流域(315 平方公里)的流域模型 Soil and Water Assessment Tool。结果表明,硝酸盐-N 负荷估算值因采样策略、负荷估算方法和感兴趣的时间段而异。在我们的研究期间,每日组合数据集的年硝酸盐-N 负荷估算值具有最低的范围(与所有应用方法的平均值相关的最大偏差为 9.8%至 15.7%)。相比之下,亚月和月数据集的年度估算结果变化范围较大(24.9%至 67.7%)。为了显示采样策略之间的差异,我们计算了亚月和月数据集的平均负荷估算值与组合数据集的平均估算值的百分比偏差。对于硝酸盐-N,亚月数据集在 2000 年的最大偏差为 64.5%。我们使用每日组合数据集的平均每月硝酸盐-N 负荷来校准模型,以获得令人满意的模拟结果(纳什-苏特克里夫效率(NSE)为 0.52)。使用亚月和月数据集的相同参数设置,NSE 分别降至 0.42 和 0.31。考虑到监测策略和负荷估算方法的不同结果,我们建议同时实施优化的监测计划和使用多种负荷估算方法,以改善水质特征描述并提供适当的模型校准和评估数据。