Gayer Christopher P, Craig David H, Flanigan Thomas L, Reed Thomas D, Cress Dean E, Basson Marc D
Research Services, John D Dingell VA Medical Center, Detroit, Michigan, USA.
J Cell Biochem. 2010 Mar 1;109(4):711-25. doi: 10.1002/jcb.22450.
Repetitive deformation like that engendered by peristalsis or villous motility stimulates intestinal epithelial proliferation on collagenous substrates and motility across fibronectin, each requiring ERK. We hypothesized that ERK acts differently at different intracellular sites. We stably transfected Caco-2 cells with ERK decoy expression vectors that permit ERK activation but interfere with its downstream signaling. Targeting sequences constrained the decoy inside or outside the nucleus. We assayed proliferation by cell counting and migration by circular wound closure with or without 10% repetitive deformation at 10 cycles/min. Confocal microscopy confirmed localization of the fusion proteins. Inhibition of phosphorylation of cytoplasmic RSK or nuclear Elk confirmed functionality. Both the nuclear-localized and cytosolic-localized ERK decoys prevented deformation-induced proliferation on collagen. Deformation-induced migration on fibronectin was prevented by constraining the decoy in the nucleus but not in the cytosol. Like the nuclear-localized ERK decoy, a Sef-overexpressing adenovirus that sequesters ERK in the cytoplasm also blocked the motogenic and mitogenic effects of strain. Inhibiting RSK or reducing Elk ablated both the mitogenic and motogenic effects of strain. RSK isoform reduction revealed isoform specificity. These results suggest that ERK must translocate to the nucleus to stimulate cell motility while ERK must act in both the cytosol and the nucleus to stimulate proliferation in response to strain. Selectively targeting ERK within different subcellular compartments may modulate or replace physical force effects on the intestinal mucosa to maintain the intestinal mucosal barrier in settings when peristalsis or villous motility are altered and fibronectin is deposited into injured tissue.
诸如由蠕动或绒毛运动产生的重复性变形,会刺激肠道上皮细胞在胶原底物上增殖,并促使其在纤连蛋白上运动,而这两种过程均需要细胞外调节蛋白激酶(ERK)的参与。我们推测ERK在细胞内的不同位点发挥不同作用。我们用ERK诱饵表达载体稳定转染了Caco-2细胞,该载体可使ERK激活,但会干扰其下游信号传导。靶向序列将诱饵限制在细胞核内或细胞核外。我们通过细胞计数来检测增殖情况,并通过圆形伤口闭合实验来检测迁移情况,实验中分别设置了有或无10%重复性变形(10次/分钟)的条件。共聚焦显微镜证实了融合蛋白的定位。对细胞质中核糖体S6激酶(RSK)或细胞核中 Elk 磷酸化的抑制证实了其功能。细胞核定位和细胞质定位的ERK诱饵均能阻止胶原上由变形诱导的增殖。将诱饵限制在细胞核而非细胞质中可阻止纤连蛋白上由变形诱导的迁移。与细胞核定位的ERK诱饵一样,一种将ERK隔离在细胞质中的Sef过表达腺病毒也阻断了应变的促运动和促有丝分裂作用。抑制RSK或减少Elk可消除应变的促有丝分裂和促运动作用。RSK亚型的减少显示出亚型特异性。这些结果表明,ERK必须转位到细胞核才能刺激细胞运动,而ERK必须在细胞质和细胞核中都发挥作用才能响应应变刺激细胞增殖。在蠕动或绒毛运动改变且纤连蛋白沉积到受损组织中的情况下,在不同亚细胞区室中选择性靶向ERK可能会调节或替代物理力对肠黏膜的作用,以维持肠黏膜屏障。