Department of Preventive Medicine, University of Southern California, Los Angeles, California, 90089-9011, USA.
Annu Rev Public Health. 2010;31:21-36. doi: 10.1146/annurev.publhealth.012809.103619.
Despite the considerable enthusiasm about the yield of novel and replicated discoveries of genetic associations from the new generation of genome-wide association studies (GWAS), the proportion of the heritability of most complex diseases that have been studied to date remains small. Some of this "dark matter" could be due to gene-environment (G x E) interactions or more complex pathways involving multiple genes and exposures. We review the basic epidemiologic study design and statistical analysis approaches to studying G x E interactions individually and then consider more comprehensive approaches to studying entire pathways or GWAS data. In addition to the usual issues in genetic association studies, particular care is needed in exposure assessment, and very large sample sizes are required. Although hypothesis-driven, pathway-based and agnostic GWA study approaches are generally viewed as opposite poles, we suggest that the two can be usefully married using hierarchical modeling strategies that exploit external pathway knowledge in mining genome-wide data.
尽管新一代全基因组关联研究 (GWAS) 在新颖且可重复的遗传关联发现方面引起了相当大的关注,但迄今为止,大多数复杂疾病的遗传率比例仍然很小。其中一些“暗物质”可能归因于基因-环境 (GxE) 相互作用,或者涉及多个基因和暴露的更复杂途径。我们回顾了研究 GxE 相互作用的基本流行病学研究设计和统计分析方法,然后考虑了研究整个途径或 GWAS 数据的更全面方法。除了遗传关联研究中的常见问题外,在暴露评估方面需要特别注意,并且需要非常大的样本量。尽管基于假设、基于途径和基于未知的 GWA 研究方法通常被视为对立的两极,但我们建议可以使用分层建模策略来有效地结合这两种方法,该策略利用外部途径知识挖掘全基因组数据。