Dipartimento di Scienze Anatomiche Umane e Fisiopatologia dell'Apparato, Locomotore, University of Bologna, Bologna, Italy.
J Anat. 2010 Mar;216(3):301-9. doi: 10.1111/j.1469-7580.2009.01188.x. Epub 2010 Jan 7.
Collagen fibres in tendons and ligaments run straight but in some regions they show crimps which disappear or appear more flattened during the initial elongation of tissues. Each crimp is formed of collagen fibrils showing knots or fibrillar crimps at the crimp top angle. The present study analyzes by polarized light microscopy, scanning electron microscopy, transmission electron microscopy the 3D morphology of fibrillar crimp in tendons and ligaments of rat demonstrating that each fibril in the fibrillar region always twists leftwards changing the plane of running and sharply bends modifying the course on a new plane. The morphology of fibrillar crimp in stretched tendons fulfills the mechanical role of the fibrillar crimp acting as a particular knot/biological hinge in absorbing tension forces during fibril strengthening and recoiling collagen fibres when stretching is removed. The left-handed path of fibrils in the fibrillar crimp region gives rise to left-handed fibril helices observed both in isolated fibrils and sections of different tendons and ligaments (flexor digitorum profundus muscle tendon, Achilles tendon, tail tendon, patellar ligament and medial collateral ligament of the knee). The left-handed path of fibrils represents a new final suprafibrillar level of the alternating handedness which was previously described only from the molecular to the microfibrillar level. When the width of the twisting angle in the fibrillar crimp is nearly 180 degrees the fibrils appear as left-handed flattened helices forming crimped collagen fibres previously described as planar crimps. When fibrils twist with different subsequent rotational angles (< 180 degrees ) they always assume a left-helical course but, running in many different nonplanar planes, they form wider helical crimped fibres.
胶原纤维在肌腱和韧带中是直的,但在一些区域它们显示出卷曲,这些卷曲在组织的初始伸长过程中消失或变得更加平坦。每个卷曲由显示结节或原纤维卷曲的胶原原纤维形成在卷曲的顶部角度。本研究通过偏光显微镜、扫描电子显微镜和透射电子显微镜分析了大鼠肌腱和韧带中原纤维卷曲的 3D 形态,证明原纤维区域中的每个原纤维总是向左扭曲,改变运行平面,并急剧弯曲,在新平面上改变方向。拉伸肌腱中原纤维卷曲的形态满足了原纤维卷曲的机械作用,作为一种特殊的结节/生物铰链,在原纤维强化过程中吸收张力,并在拉伸去除时使胶原纤维回弹。原纤维卷曲区域中纤维的左手路径导致了在分离纤维和不同肌腱和韧带(指深屈肌肌腱、跟腱、尾腱、髌韧带和膝关节内侧副韧带)的切片中观察到的左手纤维螺旋。原纤维的左手路径代表了交替手性的新的超原纤维水平,此前仅从分子到微纤维水平描述过这种交替手性。当原纤维卷曲中的扭曲角度的宽度几乎为 180 度时,纤维呈现为左手扁平螺旋,形成先前描述的卷曲胶原纤维作为平面卷曲。当纤维以不同的后续旋转角度(<180 度)扭曲时,它们总是呈现左手螺旋,但在许多不同的非平面平面中运行,它们形成更宽的螺旋卷曲纤维。