Suppr超能文献

采用连续块面扫描电子显微镜观察肌腱的螺旋状原纤维微观结构和原纤维间负荷传递的力学模型。

Helical fibrillar microstructure of tendon using serial block-face scanning electron microscopy and a mechanical model for interfibrillar load transfer.

机构信息

Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.

Department of Mechanical Engineering, University of Delaware, Newark, DE, USA.

出版信息

J R Soc Interface. 2019 Nov 29;16(160):20190547. doi: 10.1098/rsif.2019.0547. Epub 2019 Nov 20.

Abstract

Tendon's hierarchical structure allows for load transfer between its fibrillar elements at multiple length scales. Tendon microstructure is particularly important, because it includes the cells and their surrounding collagen fibrils, where mechanical interactions can have potentially important physiological and pathological contributions. However, the three-dimensional (3D) microstructure and the mechanisms of load transfer in that length scale are not known. It has been postulated that interfibrillar matrix shear or direct load transfer via the fusion/branching of small fibrils are responsible for load transfer, but the significance of these mechanisms is still unclear. Alternatively, the helical fibrils that occur at the microstructural scale in tendon may also mediate load transfer; however, these structures are not well studied due to the lack of a three-dimensional visualization of tendon microstructure. In this study, we used serial block-face scanning electron microscopy to investigate the 3D microstructure of fibrils in rat tail tendon. We found that tendon fibrils have a complex architecture with many helically wrapped fibrils. We studied the mechanical implications of these helical structures using finite-element modelling and found that frictional contact between helical fibrils can induce load transfer even in the absence of matrix bonding or fibril fusion/branching. This study is significant in that it provides a three-dimensional view of the tendon microstructure and suggests friction between helically wrapped fibrils as a mechanism for load transfer, which is an important aspect of tendon biomechanics.

摘要

肌腱的层次结构允许其纤维元件在多个长度尺度上进行载荷传递。肌腱的微观结构尤为重要,因为它包括细胞及其周围的胶原纤维,机械相互作用可能对生理和病理有潜在的重要贡献。然而,在该长度尺度上的三维(3D)微观结构和载荷传递机制尚不清楚。有人假设,纤维间基质的剪切或通过小纤维的融合/分支的直接载荷传递负责载荷传递,但这些机制的意义仍不清楚。或者,肌腱微观结构中出现的螺旋纤维也可能介导载荷传递;然而,由于缺乏对肌腱微观结构的三维可视化,这些结构的研究还不够充分。在这项研究中,我们使用连续块面扫描电子显微镜来研究大鼠尾巴肌腱中纤维的 3D 微观结构。我们发现肌腱纤维具有复杂的结构,有许多螺旋缠绕的纤维。我们使用有限元建模研究了这些螺旋结构的力学意义,发现即使没有基质结合或纤维融合/分支,螺旋纤维之间的摩擦接触也可以诱导载荷传递。这项研究具有重要意义,因为它提供了肌腱微观结构的三维视图,并提出了螺旋缠绕纤维之间的摩擦作为载荷传递的一种机制,这是肌腱生物力学的一个重要方面。

相似文献

4
Ultrastructural response of tendon to excessive level or duration of tensile load supports that collagen fibrils are mechanically continuous.
J Mech Behav Biomed Mater. 2019 Sep;97:30-40. doi: 10.1016/j.jmbbm.2019.05.002. Epub 2019 May 7.
5
Interfibrillar shear stress is the loading mechanism of collagen fibrils in tendon.
Acta Biomater. 2014 Jun;10(6):2582-90. doi: 10.1016/j.actbio.2014.01.032. Epub 2014 Feb 12.
6
Tendon and ligament fibrillar crimps give rise to left-handed helices of collagen fibrils in both planar and helical crimps.
J Anat. 2010 Mar;216(3):301-9. doi: 10.1111/j.1469-7580.2009.01188.x. Epub 2010 Jan 7.
7
Dependence of tendon multiscale mechanics on sample gauge length is consistent with discontinuous collagen fibrils.
Acta Biomater. 2020 Nov;117:302-309. doi: 10.1016/j.actbio.2020.09.046. Epub 2020 Sep 30.
8
Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.
Acta Biomater. 2016 Sep 15;42:296-307. doi: 10.1016/j.actbio.2016.06.017. Epub 2016 Jun 14.
9
Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
J Biomech. 2013 Feb 22;46(4):813-8. doi: 10.1016/j.jbiomech.2012.11.017. Epub 2012 Dec 6.
10
Evidence against proteoglycan mediated collagen fibril load transmission and dynamic viscoelasticity in tendon.
Matrix Biol. 2009 Oct;28(8):503-10. doi: 10.1016/j.matbio.2009.08.002. Epub 2009 Aug 19.

引用本文的文献

2
Fibrous finite element modeling of the optic nerve head region.
Acta Biomater. 2024 Feb;175:123-137. doi: 10.1016/j.actbio.2023.12.034. Epub 2023 Dec 24.
3
Modeling Inelastic Responses Using Constrained Reactive Mixtures.
Eur J Mech A Solids. 2023 Jul-Aug;100. doi: 10.1016/j.euromechsol.2023.105009. Epub 2023 May 6.
5
Regulators of collagen crosslinking in developing and adult tendons.
Eur Cell Mater. 2022 Apr 5;43:130-152. doi: 10.22203/eCM.v043a11.
7
Dysregulated assembly of elastic fibers in fibulin-5 knockout mice results in a tendon-specific increase in elastic modulus.
J Mech Behav Biomed Mater. 2021 Jan;113:104134. doi: 10.1016/j.jmbbm.2020.104134. Epub 2020 Oct 7.
8
Evaluation of transverse poroelastic mechanics of tendon using osmotic loading and biphasic mixture finite element modeling.
J Biomech. 2020 Aug 26;109:109892. doi: 10.1016/j.jbiomech.2020.109892. Epub 2020 Jun 26.
9
Collagen fibril abnormalities in human and mice abdominal aortic aneurysm.
Acta Biomater. 2020 Jul 1;110:129-140. doi: 10.1016/j.actbio.2020.04.022. Epub 2020 Apr 25.
10
Widespread diversity in the transcriptomes of functionally divergent limb tendons.
J Physiol. 2020 Apr;598(8):1537-1550. doi: 10.1113/JP279646. Epub 2020 Mar 30.

本文引用的文献

1
On multiscale boundary conditions in the computational homogenization of an RVE of tendon fascicles.
J Mech Behav Biomed Mater. 2019 Mar;91:131-138. doi: 10.1016/j.jmbbm.2018.12.003. Epub 2018 Dec 10.
2
A Surface-to-Surface Finite Element Algorithm for Large Deformation Frictional Contact in febio.
J Biomech Eng. 2018 Aug 1;140(8):0810131-08101315. doi: 10.1115/1.4040497.
3
Chiral behavior in rat tail tendon fascicles.
J Biomech. 2017 Nov 7;64:206-211. doi: 10.1016/j.jbiomech.2017.09.034. Epub 2017 Oct 7.
4
Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy.
Acta Biomater. 2017 Nov;63:18-36. doi: 10.1016/j.actbio.2017.08.032. Epub 2017 Sep 1.
5
Exposure to buffer solution alters tendon hydration and mechanics.
J Biomech. 2017 Aug 16;61:18-25. doi: 10.1016/j.jbiomech.2017.06.045. Epub 2017 Jul 6.
6
Investigating mechanisms of tendon damage by measuring multi-scale recovery following tensile loading.
Acta Biomater. 2017 Jul 15;57:363-372. doi: 10.1016/j.actbio.2017.04.011. Epub 2017 Apr 21.
8
Evidence of structurally continuous collagen fibrils in tendons.
Acta Biomater. 2017 Mar 1;50:293-301. doi: 10.1016/j.actbio.2017.01.006. Epub 2017 Jan 5.
9
Tension tests on mammalian collagen fibrils.
Interface Focus. 2016 Feb 6;6(1):20150080. doi: 10.1098/rsfs.2015.0080.
10
3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.
Ultramicroscopy. 2016 Apr;163:6-18. doi: 10.1016/j.ultramic.2016.01.005. Epub 2016 Jan 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验