Suppr超能文献

非平稳、非线性信号中的虚假交叉频率幅度-幅度耦合

Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals.

作者信息

Yeh Chien-Hung, Lo Men-Tzung, Hu Kun

机构信息

Department of Electrical Engineering, National Central University, Taoyuan City 32001, Taiwan; Research Center for Adaptive Data Analysis, National Central University, Taoyuan City 32001, Taiwan; Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA 02115, USA.

Research Center for Adaptive Data Analysis, National Central University, Taoyuan City 32001, Taiwan; Institute of Translational and Interdisciplinary Medicine and Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 32001, Taiwan.

出版信息

Physica A. 2016 Jul 15;454:143-150. doi: 10.1016/j.physa.2016.02.012.

Abstract

Recent studies of brain activities show that cross-frequency coupling (CFC) play an important role in memory and learning. Many measures have been proposed to investigate the CFC phenomenon, including the correlation between the amplitude envelopes of two brain waves at different frequencies - cross-frequency amplitude-amplitude coupling (AAC). In this short communication, we describe how nonstationary, nonlinear oscillatory signals may produce spurious cross-frequency AAC. Utilizing the empirical mode decomposition, we also propose a new method for assessment of AAC that can potentially reduce the effects of nonlinearity and nonstatonarity and, thus, help to avoid the detection of artificial AACs. We compare the performances of this new method and the traditional Fourier-based AAC method. We also discuss the strategies to identify potential spurious AACs.

摘要

近期关于大脑活动的研究表明,交叉频率耦合(CFC)在记忆和学习中发挥着重要作用。人们已经提出了许多方法来研究CFC现象,包括不同频率下两种脑电波的幅度包络之间的相关性——交叉频率幅度-幅度耦合(AAC)。在这篇简短的通讯中,我们描述了非平稳、非线性振荡信号如何产生虚假的交叉频率AAC。利用经验模态分解,我们还提出了一种评估AAC的新方法,该方法有可能减少非线性和非平稳性的影响,从而有助于避免检测到人为的AAC。我们比较了这种新方法与传统基于傅里叶的AAC方法的性能。我们还讨论了识别潜在虚假AAC的策略。

相似文献

1
Spurious cross-frequency amplitude-amplitude coupling in nonstationary, nonlinear signals.
Physica A. 2016 Jul 15;454:143-150. doi: 10.1016/j.physa.2016.02.012.
2
Neuronal Oscillations with Non-sinusoidal Morphology Produce Spurious Phase-to-Amplitude Coupling and Directionality.
Front Comput Neurosci. 2016 Aug 22;10:87. doi: 10.3389/fncom.2016.00087. eCollection 2016.
5
Misidentifications of specific forms of cross-frequency coupling: three warnings.
Front Neurosci. 2015 Oct 9;9:370. doi: 10.3389/fnins.2015.00370. eCollection 2015.
6
Cross-frequency coupling in psychiatric disorders: A systematic review.
Neurosci Biobehav Rev. 2022 Jul;138:104690. doi: 10.1016/j.neubiorev.2022.104690. Epub 2022 May 13.
8
Time-resolved phase-amplitude coupling in neural oscillations.
Neuroimage. 2017 Oct 1;159:270-279. doi: 10.1016/j.neuroimage.2017.07.051. Epub 2017 Jul 27.
10
Phase-clustering bias in phase-amplitude cross-frequency coupling and its removal.
J Neurosci Methods. 2015 Oct 30;254:60-72. doi: 10.1016/j.jneumeth.2015.07.014. Epub 2015 Jul 29.

引用本文的文献

2
Cross-Frequency Couplings Reveal Mice Visual Cortex Selectivity to Grating Orientations.
Brain Behav. 2025 Mar;15(3):e70360. doi: 10.1002/brb3.70360.
4
Cross-Frequency Coupling and Intelligent Neuromodulation.
Cyborg Bionic Syst. 2023 May 31;4:0034. doi: 10.34133/cbsystems.0034. eCollection 2023.
5
6
Frequency Nesting Interactions in the Subthalamic Nucleus Correlate With the Step Phases for Parkinson's Disease.
Front Physiol. 2022 Apr 29;13:890753. doi: 10.3389/fphys.2022.890753. eCollection 2022.
7
A Waveform-Independent Measure of Recurrent Neural Activity.
Front Neuroinform. 2022 Mar 7;16:800116. doi: 10.3389/fninf.2022.800116. eCollection 2022.
8
Localizing Spectral Interactions in the Resting State Network Using the Hilbert-Huang Transform.
Brain Sci. 2022 Jan 21;12(2):140. doi: 10.3390/brainsci12020140.
9
Epileptogenic Zone Location of Temporal Lobe Epilepsy by Cross-Frequency Coupling Analysis.
Front Neurol. 2021 Nov 16;12:764821. doi: 10.3389/fneur.2021.764821. eCollection 2021.
10

本文引用的文献

1
Quantifying Spasticity With Limited Swinging Cycles Using Pendulum Test Based on Phase Amplitude Coupling.
IEEE Trans Neural Syst Rehabil Eng. 2016 Oct;24(10):1081-1088. doi: 10.1109/TNSRE.2016.2521612. Epub 2016 Jan 27.
2
Novel application of a Wii remote to measure spasticity with the pendulum test: Proof of concept.
Gait Posture. 2016 Jan;43:70-5. doi: 10.1016/j.gaitpost.2015.10.025. Epub 2015 Nov 6.
3
Network Physiology: How Organ Systems Dynamically Interact.
PLoS One. 2015 Nov 10;10(11):e0142143. doi: 10.1371/journal.pone.0142143. eCollection 2015.
4
Suprachiasmatic neuron numbers and rest-activity circadian rhythms in older humans.
Ann Neurol. 2015 Aug;78(2):317-22. doi: 10.1002/ana.24432. Epub 2015 Jun 18.
5
Outlier-resilient complexity analysis of heartbeat dynamics.
Sci Rep. 2015 Mar 6;5:8836. doi: 10.1038/srep08836.
6
Lack of exercise leads to significant and reversible loss of scale invariance in both aged and young mice.
Proc Natl Acad Sci U S A. 2015 Feb 24;112(8):2320-4. doi: 10.1073/pnas.1424706112. Epub 2015 Feb 9.
7
Dynamic changes in phase-amplitude coupling facilitate spatial attention control in fronto-parietal cortex.
PLoS Biol. 2014 Aug 26;12(8):e1001936. doi: 10.1371/journal.pbio.1001936. eCollection 2014 Aug.
8
Detecting phase-amplitude coupling with high frequency resolution using adaptive decompositions.
J Neurosci Methods. 2014 Apr 15;226:15-32. doi: 10.1016/j.jneumeth.2014.01.006. Epub 2014 Jan 19.
9
Investigating the interaction between heart rate variability and sleep EEG using nonlinear algorithms.
J Neurosci Methods. 2013 Oct 15;219(2):233-9. doi: 10.1016/j.jneumeth.2013.08.008. Epub 2013 Aug 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验