一氧化氮通过激活 IIa 类组蛋白去乙酰化酶来决定小鼠胚胎干细胞的中胚层分化:在后肢缺血小鼠模型中的潜在治疗意义。
Nitric oxide determines mesodermic differentiation of mouse embryonic stem cells by activating class IIa histone deacetylases: potential therapeutic implications in a mouse model of hindlimb ischemia.
机构信息
Laboratorio di Patologia Vascolare, Istituto Dermopatico dell' Immacolata - Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.
出版信息
Stem Cells. 2010 Mar 31;28(3):431-42. doi: 10.1002/stem.300.
In human endothelial cells, nitric oxide (NO) results in class IIa histone deacetylases (HDACs) activation and marked histone deacetylation. It is unknown whether similar epigenetic events occur in embryonic stem cells (ESC) exposed to NO and how this treatment could influence ESC therapeutic potential during tissue regeneration.This study reports that the NO-dependent class IIa HDACs subcellular localization and activity decreases the global acetylation level of H3 histones in ESC and that this phenomenon is associated with the inhibition of Oct4, Nanog, and KLF4 expression. Further, a NO-induced formation of macromolecular complexes including HDAC3, 4, 7, and protein phosphatase 2A (PP2A) have been detected. These processes correlated with the expression of the mesodermal-specific protein brachyury (Bry) and the appearance of several vascular and skeletal muscle differentiation markers. These events were abolished by the class IIa-specific inhibitor MC1568 and by HDAC4 or HDAC7 short interfering RNA (siRNA). The ability of NO to induce mesodermic/cardiovascular gene expression prompted us to evaluate the regenerative potential of these cells in a mouse model of hindlimb ischemia. We found that NO-treated ESCs injected into the cardiac left ventricle selectively localized in the ischemic hindlimb and contributed to the regeneration of muscular and vascular structures. These findings establish a key role for NO and class IIa HDACs modulation in ESC mesodermal commitment and enhanced regenerative potential in vivo.
在人类内皮细胞中,一氧化氮(NO)导致 IIa 类组蛋白去乙酰化酶(HDACs)的激活和明显的组蛋白去乙酰化。目前尚不清楚胚胎干细胞(ESC)暴露于 NO 时是否会发生类似的表观遗传事件,以及这种处理如何影响 ESC 在组织再生过程中的治疗潜力。本研究报告称,NO 依赖性 IIa 类 HDACs 的亚细胞定位和活性降低了 ESC 中 H3 组蛋白的整体乙酰化水平,这种现象与 Oct4、Nanog 和 KLF4 表达的抑制有关。此外,还检测到包括 HDAC3、4、7 和蛋白磷酸酶 2A(PP2A)在内的大分子复合物的形成。这些过程与中胚层特异性蛋白 brachyury(Bry)的表达以及几种血管和骨骼肌分化标志物的出现相关。这些事件被 IIa 类特异性抑制剂 MC1568 和 HDAC4 或 HDAC7 短发夹 RNA(siRNA)所消除。NO 诱导中胚层/心血管基因表达的能力促使我们在小鼠后肢缺血模型中评估这些细胞的再生潜力。我们发现,注射到心脏左心室的 NO 处理后的 ESC 选择性地定位于缺血性后肢,并有助于肌肉和血管结构的再生。这些发现确立了 NO 和 IIa 类 HDACs 调节在 ESC 中胚层承诺和增强体内再生潜力中的关键作用。