Suppr超能文献

微秒时间尺度的分子动力学揭示β2 肾上腺素能受体离子键亚稳定态的协同转换。

Concerted interconversion between ionic lock substates of the beta(2) adrenergic receptor revealed by microsecond timescale molecular dynamics.

机构信息

Department of Biochemistry and Biophysics, University of Rochester Medical School, Rochester, New York, USA.

出版信息

Biophys J. 2010 Jan 6;98(1):76-84. doi: 10.1016/j.bpj.2009.09.046.

Abstract

The recently solved crystallographic structures for the A(2A) adenosine receptor and the beta(1) and beta(2) adrenergic receptors have shown important differences between members of the class-A G-protein-coupled receptors and their archetypal model, rhodopsin, such as the apparent breaking of the ionic lock that stabilizes the inactive structure. Here, we characterize a 1.02 mus all-atom simulation of an apo-beta(2) adrenergic receptor that is missing the third intracellular loop to better understand the inactive structure. Although we find that the structure is remarkably rigid, there is a rapid influx of water into the core of the protein, as well as a slight expansion of the molecule relative to the crystal structure. In contrast to the x-ray crystal structures, the ionic lock rapidly reforms, although we see an activation-precursor-like event wherein the ionic lock opens for approximately 200 ns, accompanied by movements in the transmembrane helices associated with activation. When the lock reforms, we see the structure return to its inactive conformation. We also find that the ionic lock exists in three states: closed (or locked), semi-open with a bridging water molecule, and open. The interconversion of these states involves the concerted motion of the entire protein. We characterize these states and the concerted motion underlying their interconversion. These findings may help elucidate the connection between key local events and the associated global structural changes during activation.

摘要

最近解决的 A(2A) 腺苷受体和β(1)和β(2)肾上腺素能受体的晶体结构表明,A 类 G 蛋白偶联受体与其原型模型视紫红质之间存在重要差异,例如稳定非活性结构的离子锁的明显破坏。在这里,我们对缺少第三个细胞内环的 apo-β(2)肾上腺素能受体进行了 1.02 微秒的全原子模拟,以更好地理解非活性结构。尽管我们发现该结构非常僵硬,但仍有大量水迅速涌入蛋白质核心,并且分子相对于晶体结构略有扩张。与 X 射线晶体结构相反,离子锁迅速重新形成,尽管我们观察到类似于激活前体的事件,其中离子锁打开约 200 纳秒,同时与激活相关的跨膜螺旋发生运动。当锁重新形成时,我们看到结构恢复到其非活性构象。我们还发现离子锁存在于三种状态:关闭(或锁定)、带桥接水分子的半开和打开。这些状态的相互转换涉及整个蛋白质的协同运动。我们对这些状态及其相互转换背后的协同运动进行了表征。这些发现可能有助于阐明在激活过程中关键局部事件与相关全局结构变化之间的联系。

相似文献

2
Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4689-94. doi: 10.1073/pnas.0811065106. Epub 2009 Mar 3.
3
Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
J Mol Biol. 2008 Oct 3;382(2):539-55. doi: 10.1016/j.jmb.2008.06.084. Epub 2008 Jul 7.
7
Molecular dynamics simulations reveal insights into key structural elements of adenosine receptors.
Biochemistry. 2011 May 17;50(19):4194-208. doi: 10.1021/bi200100t. Epub 2011 Apr 20.
9
Effect of intracellular loop 3 on intrinsic dynamics of human β2-adrenergic receptor.
BMC Struct Biol. 2013 Nov 9;13:29. doi: 10.1186/1472-6807-13-29.

引用本文的文献

1
A short story on how chromophore is hydrolyzed from rhodopsin for recycling.
Bioessays. 2023 Sep;45(9):e2300068. doi: 10.1002/bies.202300068. Epub 2023 Jul 16.
2
Toxic Effect of Fullerene and Its Derivatives upon the Transmembrane β-Adrenergic Receptors.
Molecules. 2022 Jul 18;27(14):4562. doi: 10.3390/molecules27144562.
3
Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor.
Comput Struct Biotechnol J. 2022 Jan 20;20:628-639. doi: 10.1016/j.csbj.2022.01.015. eCollection 2022.
4
Can molecular dynamics simulations improve the structural accuracy and virtual screening performance of GPCR models?
PLoS Comput Biol. 2021 May 13;17(5):e1008936. doi: 10.1371/journal.pcbi.1008936. eCollection 2021 May.
6
Agonist Binding and G Protein Coupling in Histamine H Receptor: A Molecular Dynamics Study.
Int J Mol Sci. 2020 Sep 12;21(18):6693. doi: 10.3390/ijms21186693.
7
Computational Studies of SARS-CoV-2 3CLpro: Insights from MD Simulations.
Int J Mol Sci. 2020 Jul 28;21(15):5346. doi: 10.3390/ijms21155346.
8
Structural basis of ligand recognition and self-activation of orphan GPR52.
Nature. 2020 Mar;579(7797):152-157. doi: 10.1038/s41586-020-2019-0. Epub 2020 Feb 19.
9
Quantum Mechanical and Molecular Mechanics Modeling of Membrane-Embedded Rhodopsins.
J Membr Biol. 2019 Oct;252(4-5):425-449. doi: 10.1007/s00232-019-00095-0. Epub 2019 Sep 30.
10
The Molecular Basis of G Protein-Coupled Receptor Activation.
Annu Rev Biochem. 2018 Jun 20;87:897-919. doi: 10.1146/annurev-biochem-060614-033910.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Quantifying uncertainty and sampling quality in biomolecular simulations.
Annu Rep Comput Chem. 2009 Jan 1;5:23-48. doi: 10.1016/S1574-1400(09)00502-7.
3
LOOS: an extensible platform for the structural analysis of simulations.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2332-5. doi: 10.1109/IEMBS.2009.5335065.
4
The structure and function of G-protein-coupled receptors.
Nature. 2009 May 21;459(7245):356-63. doi: 10.1038/nature08144.
6
Dynamics of the internal water molecules in squid rhodopsin.
Biophys J. 2009 Apr 8;96(7):2572-6. doi: 10.1016/j.bpj.2008.12.3927.
7
Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4689-94. doi: 10.1073/pnas.0811065106. Epub 2009 Mar 3.
8
Discovery of new GPCR biology: one receptor structure at a time.
Structure. 2009 Jan 14;17(1):8-14. doi: 10.1016/j.str.2008.12.003.
9
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist.
Science. 2008 Nov 21;322(5905):1211-7. doi: 10.1126/science.1164772. Epub 2008 Oct 2.
10
Structural basis for ligand binding and specificity in adrenergic receptors: implications for GPCR-targeted drug discovery.
Biochemistry. 2008 Oct 21;47(42):11013-23. doi: 10.1021/bi800891r. Epub 2008 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验