Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA.
J Mol Biol. 2010 Apr 23;398(1):161-73. doi: 10.1016/j.jmb.2010.02.032. Epub 2010 Feb 23.
Rhodopsin, the prototype class A G-protein-coupled receptor, is a very important model system for all seven-transmembrane domain proteins. Characterization of the interactions between rhodopsin and transducin, its intracellular G-protein counterpart, and the fluctuations in these interactions due to thermal motions is required for an understanding of early events in the mechanism of signal transduction. In this study, we used all-atom molecular dynamics simulations of a transmembrane protein complex between rhodopsin and the heterotrimeric transducin (G alpha beta gamma) in an all-atom DOPC (1,2-dioleoylsn-glycero-3-phosphocholine) membrane-water environment. Based on the analysis of a microsecond-timescale simulation trajectory, we characterized the dynamics of the system and its effects in the structural features of the protein subunits. Our simulations describe a highly dynamic interaction interface where the system is alternating between distinct domain orientations at the 10- to 100-ns timescale that can be further classified into interaction modes involving contacts between distinct structural features on the protein subunits. We related our results with experimental measurements from a variety of studies and high-resolution models of activated rhodopsin. Monitoring key structural features that are involved in the activation process along our simulation trajectory indicates the presence of extensive dynamics in the dark-adapted state, including a motion of Y223 from helix 3 toward the "ionic-lock" interactions of the conserved ERY motif. The dynamic picture shown here is consistent with a framework in which the dark-state fluctuations sample conformations consistent with the activated state. These results provide an atomic-level description of the dynamics of the full complex and further suggest novel mutagenesis experiments that can be used to investigate the stability and dynamics of this model membrane protein receptor system.
视紫红质,原型 A 类 G 蛋白偶联受体,是所有七跨膜域蛋白的一个非常重要的模型系统。为了理解信号转导机制中的早期事件,需要对视紫红质与其细胞内 G 蛋白对应物转导蛋白之间的相互作用以及这些相互作用因热运动而产生的波动进行特征描述。在这项研究中,我们使用全原子分子动力学模拟方法,研究了视紫红质与异三聚体转导蛋白(Gαβγ)之间的跨膜蛋白复合物在全原子 DOPC(1,2-二油酰基-sn-甘油-3-磷酸胆碱)膜-水环境中的相互作用。基于对微秒时间尺度模拟轨迹的分析,我们对系统的动力学及其对蛋白质亚基结构特征的影响进行了特征描述。我们的模拟描述了一个高度动态的相互作用界面,在 10 到 100 纳秒的时间尺度上,系统在不同的结构域取向之间交替,这些取向可以进一步分为涉及蛋白质亚基上不同结构特征之间相互作用的模式。我们将我们的结果与来自各种研究的实验测量结果和高分辨率的激活视紫红质模型相关联。沿着我们的模拟轨迹监测参与激活过程的关键结构特征表明,在黑暗适应状态下存在广泛的动力学,包括来自螺旋 3 的 Y223 向保守的 ERY 基序的“离子锁定”相互作用的运动。这里显示的动态图像与一个框架一致,即暗状态波动可以采样与激活状态一致的构象。这些结果提供了完整复合物动力学的原子水平描述,并进一步提出了新的诱变实验,可以用于研究这个模型膜蛋白受体系统的稳定性和动力学。