Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada.
Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
Sci Rep. 2021 Mar 15;11(1):5910. doi: 10.1038/s41598-021-84069-0.
G protein-coupled receptors (GPCRs) are the largest class of transmembrane proteins, making them an important target for therapeutics. Activation of these receptors is modulated by orthosteric ligands, which stabilize one or several states within a complex conformational ensemble. The intra- and inter-state dynamics, however, is not well documented. Here, we used single-molecule fluorescence to measure ligand-modulated conformational dynamics of the adenosine A receptor (AR) on nanosecond to millisecond timescales. Experiments were performed on detergent-purified AR in either the ligand-free (apo) state, or when bound to an inverse, partial or full agonist ligand. Single-molecule Förster resonance energy transfer (smFRET) was performed on detergent-solubilized AR to resolve active and inactive states via the separation between transmembrane (TM) helices 4 and 6. The ligand-dependent changes of the smFRET distributions are consistent with conformational selection and with inter-state exchange lifetimes ≥ 3 ms. Local conformational dynamics around residue 229 on TM6 was measured using fluorescence correlation spectroscopy (FCS), which captures dynamic quenching due to photoinduced electron transfer (PET) between a covalently-attached dye and proximal aromatic residues. Global analysis of PET-FCS data revealed fast (150-350 ns), intermediate (50-60 μs) and slow (200-300 μs) conformational dynamics in AR, with lifetimes and amplitudes modulated by ligands and a G-protein mimetic (mini-G). Most notably, the agonist binding and the coupling to mini-G accelerates and increases the relative contribution of the sub-microsecond phase. Molecular dynamics simulations identified three tyrosine residues (Y112, Y288, and Y290) as being responsible for the dynamic quenching observed by PET-FCS and revealed associated helical motions around residue 229 on TM6. This study provides a quantitative description of conformational dynamics in AR and supports the idea that ligands bias not only GPCR conformations but also the dynamics within and between distinct conformational states of the receptor.
G 蛋白偶联受体(GPCRs)是最大的跨膜蛋白家族,是治疗药物的重要靶点。这些受体的激活受到变构配体的调节,变构配体稳定复杂构象集合中的一个或多个状态。然而,内态和状态之间的动力学还没有很好地记录下来。在这里,我们使用单分子荧光法在纳秒到毫秒的时间尺度上测量了腺苷 A 受体(AR)的配体调节构象动力学。实验在去污剂纯化的 AR 上进行,处于无配体(apo)状态或与反向、部分或完全激动剂配体结合时。在去污剂溶解的 AR 上进行单分子荧光共振能量转移(smFRET),通过跨膜(TM)螺旋 4 和 6 之间的分离来分辨活性和非活性状态。配体依赖性 smFRET 分布变化与构象选择一致,并且状态间交换寿命≥3ms。使用荧光相关光谱(FCS)测量 TM6 上残基 229 周围的局部构象动力学,该方法捕捉到由于共价连接的染料和附近芳香族残基之间的光诱导电子转移(PET)引起的动态猝灭。PET-FCS 数据的全局分析揭示了 AR 中的快速(150-350ns)、中间(50-60μs)和缓慢(200-300μs)构象动力学,配体和 G 蛋白模拟物(mini-G)调节寿命和幅度。值得注意的是,激动剂结合和与 mini-G 的偶联加速并增加了亚微秒相的相对贡献。分子动力学模拟确定了三个酪氨酸残基(Y112、Y288 和 Y290)是由 PET-FCS 观察到的动态猝灭负责,并揭示了 TM6 上残基 229 周围的相关螺旋运动。这项研究提供了 AR 构象动力学的定量描述,并支持了这样的观点,即配体不仅使 GPCR 构象偏向,而且还使受体的不同构象状态之间和内部的动力学偏向。