Suppr超能文献

抑郁症状自评量表(IDS-SR)在抑郁障碍患者和健康对照中的结构和维度。

The structure and dimensionality of the Inventory of Depressive Symptomatology Self Report (IDS-SR) in patients with depressive disorders and healthy controls.

机构信息

Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands.

出版信息

J Affect Disord. 2010 Sep;125(1-3):146-54. doi: 10.1016/j.jad.2009.12.020. Epub 2010 Jan 13.

Abstract

BACKGROUND

The Inventory of Depressive Symptomatology Self Report (IDS-SR) is a widely used but heterogeneous measure of depression severity. Insight in its factor structure and dimensionality could help to develop more homogeneous IDS-SR subscales. However previous factoranalytical studies have found mixed results. Therefore, the present study tested which factor structure underlies the IDS-SR and, in addition, if the factors can be used as unidimensional subscales.

METHODS

Confirmatory factor analysis (CFA) was done to identify the best-fitting factor structure. The study sample consisted of 2600 individuals (mean age 40.5+/-12.1). We assessed model fit in 4 groups: 957 Major Depressive Disorder (MDD) patients, 450 remitted MDD patients, 570 patients with an anxiety disorder and 623 healthy controls to test the consistency of model fit. Rasch analyses in the full sample were used to evaluate and optimize the unidimensionality and psychometric quality of the factors.

RESULTS

CFA indicated that a 3-factor model fits the IDS-SR data best and is consistent across groups, with a 'mood/cognition' factor, an 'anxiety/arousal' factor and a 'sleep' factor. In addition, Rasch analyses indicated that the 'mood/cognition' and 'anxiety/arousal' factors could be optimized to be used as unidimensional subscales.

LIMITATIONS

The fit of only 4 models was tested, ranging from a 1- to 4-factor model.

CONCLUSIONS

The IDS-SR is a heterogeneous instrument with a multifactorial underlying structure. It is possible to measure more homogeneous symptomatology with IDS-SR subscales, which could be useful in clinical practice and scientific research.

摘要

背景

抑郁症状自评量表(IDS-SR)是一种广泛使用但具有异质性的抑郁严重程度测量工具。深入了解其因子结构和维度可以帮助开发更同质的 IDS-SR 子量表。然而,之前的因子分析研究得出了混合的结果。因此,本研究旨在检验 IDS-SR 的潜在因子结构,并且,此外,这些因子是否可以作为单一维度的子量表。

方法

采用验证性因子分析(CFA)来确定最佳拟合的因子结构。研究样本由 2600 人组成(平均年龄 40.5+/-12.1)。我们在 4 组人群中评估了模型拟合度:957 名重度抑郁症(MDD)患者、450 名缓解的 MDD 患者、570 名焦虑障碍患者和 623 名健康对照者,以检验模型拟合的一致性。在全样本中进行的 Rasch 分析用于评估和优化因子的单一维度和心理测量质量。

结果

CFA 表明,一个 3 因子模型最适合 IDS-SR 数据,并且在各组之间具有一致性,包括“情绪/认知”因子、“焦虑/唤醒”因子和“睡眠”因子。此外,Rasch 分析表明,“情绪/认知”和“焦虑/唤醒”因子可以被优化为单一维度的子量表。

局限性

仅测试了 4 种模型的拟合度,范围从 1 因子到 4 因子模型。

结论

IDS-SR 是一种具有多因素潜在结构的异质工具。使用 IDS-SR 子量表可以测量更同质的症状,这在临床实践和科学研究中可能是有用的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验