Suppr超能文献

临床慢性阻塞性肺疾病表型:一种使用主成分和聚类分析的新方法。

Clinical COPD phenotypes: a novel approach using principal component and cluster analyses.

机构信息

Service de Pneumologie, Hôpital Cochin, Assistance Publique Hôpitaux de Paris, 27 rue du Faubourg St Jacques, 75679 Paris Cedex 14, France.

出版信息

Eur Respir J. 2010 Sep;36(3):531-9. doi: 10.1183/09031936.00175109. Epub 2010 Jan 14.

Abstract

Classification of chronic obstructive pulmonary disease (COPD) is usually based on the severity of airflow limitation, which may not reflect phenotypic heterogeneity. Here, we sought to identify COPD phenotypes using multiple clinical variables. COPD subjects recruited in a French multicentre cohort were characterised using a standardised process. Principal component analysis (PCA) was performed using eight variables selected for their relevance to COPD: age, cumulative smoking, forced expiratory volume in 1 s (FEV(1)) (% predicted), body mass index, exacerbations, dyspnoea (modified Medical Research Council scale), health status (St George's Respiratory Questionnaire) and depressive symptoms (hospital anxiety and depression scale). Patient classification was performed using cluster analysis based on PCA-transformed data. 322 COPD subjects were analysed: 77% were male; median (interquartile range) age was 65.0 (58.0-73.0) yrs; FEV(1) was 48.9 (34.1-66.3)% pred; and 21, 135, 107 and 59 subjects were classified in Global Initiative for Chronic Obstructive Lung Disease (GOLD) stages 1, 2, 3 and 4, respectively. PCA showed that three independent components accounted for 61% of variance. PCA-based cluster analysis resulted in the classification of subjects into four clinical phenotypes that could not be identified using GOLD classification. Importantly, subjects with comparable airflow limitation (FEV(1)) belonged to different phenotypes and had marked differences in age, symptoms, comorbidities and predicted mortality. These analyses underscore the need for novel multidimensional COPD classification for improving patient care and quality of clinical trials.

摘要

慢性阻塞性肺疾病(COPD)的分类通常基于气流受限的严重程度,但这可能无法反映表型异质性。在这里,我们试图使用多个临床变量来确定 COPD 表型。在法国多中心队列中招募的 COPD 患者采用标准化流程进行特征描述。使用与 COPD 相关的 8 个变量进行主成分分析(PCA):年龄、累计吸烟量、1 秒用力呼气量(FEV1)(%预计值)、体重指数、急性加重、呼吸困难(改良医学研究委员会呼吸困难量表)、健康状况(圣乔治呼吸问卷)和抑郁症状(医院焦虑和抑郁量表)。基于 PCA 转换后的数据进行聚类分析,对患者进行分类。共分析了 322 例 COPD 患者:77%为男性;中位(四分位间距)年龄为 65.0(58.0-73.0)岁;FEV1 为 48.9(34.1-66.3)%预计值;21、135、107 和 59 例患者分别被归类为全球慢性阻塞性肺疾病倡议(GOLD)1、2、3 和 4 期。PCA 显示,三个独立成分占 61%的方差。基于 PCA 的聚类分析将患者分为 4 种临床表型,不能通过 GOLD 分类来识别。重要的是,气流受限(FEV1)相当的患者属于不同的表型,其年龄、症状、合并症和预测死亡率存在显著差异。这些分析强调需要新型多维 COPD 分类来改善患者护理和临床试验质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验