Suppr超能文献

贝叶斯在线多任务学习高斯过程。

Bayesian online multitask learning of Gaussian processes.

机构信息

Department of Information Engineering, University of Padova, Via Gradenigo, 6/B, 35131 Padova, Italy.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2010 Feb;32(2):193-205. doi: 10.1109/TPAMI.2008.297.

Abstract

Standard single-task kernel methods have recently been extended to the case of multitask learning in the context of regularization theory. There are experimental results, especially in biomedicine, showing the benefit of the multitask approach compared to the single-task one. However, a possible drawback is computational complexity. For instance, when regularization networks are used, complexity scales as the cube of the overall number of training data, which may be large when several tasks are involved. The aim of this paper is to derive an efficient computational scheme for an important class of multitask kernels. More precisely, a quadratic loss is assumed and each task consists of the sum of a common term and a task-specific one. Within a Bayesian setting, a recursive online algorithm is obtained, which updates both estimates and confidence intervals as new data become available. The algorithm is tested on two simulated problems and a real data set relative to xenobiotics administration in human patients.

摘要

标准的单任务核方法最近已经在正则化理论的背景下扩展到多任务学习的情况。有实验结果,特别是在生物医学领域,表明多任务方法相对于单任务方法的优势。然而,一个可能的缺点是计算复杂性。例如,当使用正则化网络时,复杂度随着总训练数据数量的立方而增加,当涉及多个任务时,这可能会很大。本文的目的是为一类重要的多任务核导出一个有效的计算方案。更确切地说,假设二次损失,并且每个任务由公共项和特定任务项的和组成。在贝叶斯设置中,获得了一个递归在线算法,当新数据可用时,该算法会更新估计值和置信区间。该算法在两个模拟问题和一个与人患者中使用外源性物质的真实数据集上进行了测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验