Suppr超能文献

具有高斯过程先验的贝叶斯多任务分类

Bayesian multitask classification with Gaussian process priors.

作者信息

Skolidis Grigorios, Sanguinetti Guido

机构信息

School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.

出版信息

IEEE Trans Neural Netw. 2011 Dec;22(12):2011-21. doi: 10.1109/TNN.2011.2168568. Epub 2011 Oct 10.

Abstract

We present a novel approach to multitask learning in classification problems based on Gaussian process (GP) classification. The method extends previous work on multitask GP regression, constraining the overall covariance (across tasks and data points) to factorize as a Kronecker product. Fully Bayesian inference is possible but time consuming using sampling techniques. We propose approximations based on the popular variational Bayes and expectation propagation frameworks, showing that they both achieve excellent accuracy when compared to Gibbs sampling, in a fraction of time. We present results on a toy dataset and two real datasets, showing improved performance against the baseline results obtained by learning each task independently. We also compare with a recently proposed state-of-the-art approach based on support vector machines, obtaining comparable or better results.

摘要

我们提出了一种基于高斯过程(GP)分类的分类问题多任务学习新方法。该方法扩展了先前关于多任务GP回归的工作,将整体协方差(跨任务和数据点)约束为克罗内克积进行分解。完全贝叶斯推理是可行的,但使用采样技术会很耗时。我们基于流行的变分贝叶斯和期望传播框架提出了近似方法,结果表明与吉布斯采样相比,它们都能在更短的时间内达到出色的准确率。我们在一个玩具数据集和两个真实数据集上展示了结果,表明与通过独立学习每个任务获得的基线结果相比性能有所提升。我们还与最近提出的基于支持向量机的最先进方法进行了比较,得到了相当或更好的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验