Skolidis Grigorios, Sanguinetti Guido
School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK.
IEEE Trans Neural Netw. 2011 Dec;22(12):2011-21. doi: 10.1109/TNN.2011.2168568. Epub 2011 Oct 10.
We present a novel approach to multitask learning in classification problems based on Gaussian process (GP) classification. The method extends previous work on multitask GP regression, constraining the overall covariance (across tasks and data points) to factorize as a Kronecker product. Fully Bayesian inference is possible but time consuming using sampling techniques. We propose approximations based on the popular variational Bayes and expectation propagation frameworks, showing that they both achieve excellent accuracy when compared to Gibbs sampling, in a fraction of time. We present results on a toy dataset and two real datasets, showing improved performance against the baseline results obtained by learning each task independently. We also compare with a recently proposed state-of-the-art approach based on support vector machines, obtaining comparable or better results.
我们提出了一种基于高斯过程(GP)分类的分类问题多任务学习新方法。该方法扩展了先前关于多任务GP回归的工作,将整体协方差(跨任务和数据点)约束为克罗内克积进行分解。完全贝叶斯推理是可行的,但使用采样技术会很耗时。我们基于流行的变分贝叶斯和期望传播框架提出了近似方法,结果表明与吉布斯采样相比,它们都能在更短的时间内达到出色的准确率。我们在一个玩具数据集和两个真实数据集上展示了结果,表明与通过独立学习每个任务获得的基线结果相比性能有所提升。我们还与最近提出的基于支持向量机的最先进方法进行了比较,得到了相当或更好的结果。