Suppr超能文献

一种利用稀疏、异构临床数据对重症监护病房(ICU)疾病严重程度进行评估和预测的多变量时间序列建模方法。

A Multivariate Timeseries Modeling Approach to Severity of Illness Assessment and Forecasting in ICU with Sparse, Heterogeneous Clinical Data.

作者信息

Ghassemi Marzyeh, Pimentel Marco A F, Naumann Tristan, Brennan Thomas, Clifton David A, Szolovits Peter, Feng Mengling

机构信息

Computer Science, MIT, Cambridge, MA 02139 USA.

Engineering Science, University of Oxford, Oxford, UK.

出版信息

Proc AAAI Conf Artif Intell. 2015 Jan;2015:446-453.

Abstract

The ability to determine patient acuity (or severity of illness) has immediate practical use for clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled clinical data, including both physiological signals and clinical notes. The learned multi-task GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic brain injury patients, by learning the interactions between intracranial pressure and mean arterial blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both cases, MTGPs provided improved results: an MTGP model provided better results than single-task GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP hyperparameters obtained improved results when used as additional classification features (0.812 vs 0.788 AUC).

摘要

确定患者病情严重程度的能力对临床医生具有直接的实际用途。我们使用多任务高斯过程(GP)模型评估多元时间序列建模在嘈杂、不完整、稀疏、异构和采样不均匀的临床数据(包括生理信号和临床记录)中的应用。然后,将学习到的多任务GP(MTGP)超参数用于评估和预测患者病情严重程度。我们使用从ICU患者获取的两个真实临床数据集进行了实验:第一,通过学习颅内压和平均动脉血压信号之间的相互作用来估计脑血管压力反应性,这是创伤性脑损伤患者继发性损伤的一个重要指标;第二,使用临床病程记录进行死亡率预测。在这两种情况下,MTGP都提供了更好的结果:一个MTGP模型在信号插值和预测方面比单任务GP模型提供了更好的结果(均方根误差为0.91对0.69),并且当将MTGP超参数用作额外的分类特征时,也获得了更好的结果(曲线下面积为0.812对0.788)。

相似文献

2
Multitask Gaussian processes for multivariate physiological time-series analysis.
IEEE Trans Biomed Eng. 2015 Jan;62(1):314-22. doi: 10.1109/TBME.2014.2351376.
6
Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
PLoS One. 2017 Dec 15;12(12):e0188941. doi: 10.1371/journal.pone.0188941. eCollection 2017.
7
Comparison of Gaussian Processes Methods to Linear methods for Imputation of Sparse Physiological Time Series.
Annu Int Conf IEEE Eng Med Biol Soc. 2018 Jul;2018:4106-4109. doi: 10.1109/EMBC.2018.8513303.
8
Routine intracranial pressure monitoring in acute coma.
Cochrane Database Syst Rev. 2015 Nov 2;2015(11):CD002043. doi: 10.1002/14651858.CD002043.pub3.
9
Cerebrovascular Pressure Reactivity in Children With Traumatic Brain Injury.
Pediatr Crit Care Med. 2015 Oct;16(8):739-49. doi: 10.1097/PCC.0000000000000471.

引用本文的文献

1
Deep Multi-Output Forecasting: Learning to Accurately Predict Blood Glucose Trajectories.
KDD. 2018 Aug;2018:1387-1395. doi: 10.1145/3219819.3220102. Epub 2018 Jul 19.
2
Multimodal interpretable data-driven models for early prediction of multidrug resistance using multivariate time series.
Health Inf Sci Syst. 2025 May 7;13(1):35. doi: 10.1007/s13755-025-00351-9. eCollection 2025 Dec.
4
An empirical study of using radiology reports and images to improve intensive care unit mortality prediction.
JAMIA Open. 2025 Feb 20;8(1):ooae137. doi: 10.1093/jamiaopen/ooae137. eCollection 2025 Feb.
5
Entering the new digital era of intensive care medicine: an overview of interdisciplinary approaches to use artificial intelligence for patients' benefit.
Eur J Anaesthesiol Intensive Care. 2022 Dec 21;2(1):e0014. doi: 10.1097/EA9.0000000000000014. eCollection 2023 Feb.
7
A transformer-based diffusion probabilistic model for heart rate and blood pressure forecasting in Intensive Care Unit.
Comput Methods Programs Biomed. 2024 Apr;246:108060. doi: 10.1016/j.cmpb.2024.108060. Epub 2024 Feb 8.
8
Machine Learning for Benchmarking Critical Care Outcomes.
Healthc Inform Res. 2023 Oct;29(4):301-314. doi: 10.4258/hir.2023.29.4.301. Epub 2023 Oct 31.
10
Missing data matter: an empirical evaluation of the impacts of missing EHR data in comparative effectiveness research.
J Am Med Inform Assoc. 2023 Jun 20;30(7):1246-1256. doi: 10.1093/jamia/ocad066.

本文引用的文献

1
Unfolding Physiological State: Mortality Modelling in Intensive Care Units.
KDD. 2014 Aug 24;2014:75-84. doi: 10.1145/2623330.2623742.
2
Multitask Gaussian processes for multivariate physiological time-series analysis.
IEEE Trans Biomed Eng. 2015 Jan;62(1):314-22. doi: 10.1109/TBME.2014.2351376.
3
Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data.
PLoS One. 2013 Jun 24;8(6):e66341. doi: 10.1371/journal.pone.0066341. Print 2013.
4
Critical care--where have we been and where are we going?
Crit Care. 2013;17 Suppl 1(Suppl 1):S2. doi: 10.1186/cc11500. Epub 2013 Mar 12.
7
Gaussian processes for personalized e-health monitoring with wearable sensors.
IEEE Trans Biomed Eng. 2013 Jan;60(1):193-7. doi: 10.1109/TBME.2012.2208459.
8
Dynamic time warping and machine learning for signal quality assessment of pulsatile signals.
Physiol Meas. 2012 Sep;33(9):1491-501. doi: 10.1088/0967-3334/33/9/1491. Epub 2012 Aug 17.
9
Artifact removal for intracranial pressure monitoring signals: a robust solution with signal decomposition.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:797-801. doi: 10.1109/IEMBS.2011.6090182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验