Ghassemi Marzyeh, Pimentel Marco A F, Naumann Tristan, Brennan Thomas, Clifton David A, Szolovits Peter, Feng Mengling
Computer Science, MIT, Cambridge, MA 02139 USA.
Engineering Science, University of Oxford, Oxford, UK.
Proc AAAI Conf Artif Intell. 2015 Jan;2015:446-453.
The ability to determine patient acuity (or severity of illness) has immediate practical use for clinicians. We evaluate the use of multivariate timeseries modeling with the multi-task Gaussian process (GP) models using noisy, incomplete, sparse, heterogeneous and unevenly-sampled clinical data, including both physiological signals and clinical notes. The learned multi-task GP (MTGP) hyperparameters are then used to assess and forecast patient acuity. Experiments were conducted with two real clinical data sets acquired from ICU patients: firstly, estimating cerebrovascular pressure reactivity, an important indicator of secondary damage for traumatic brain injury patients, by learning the interactions between intracranial pressure and mean arterial blood pressure signals, and secondly, mortality prediction using clinical progress notes. In both cases, MTGPs provided improved results: an MTGP model provided better results than single-task GP models for signal interpolation and forecasting (0.91 vs 0.69 RMSE), and the use of MTGP hyperparameters obtained improved results when used as additional classification features (0.812 vs 0.788 AUC).
确定患者病情严重程度的能力对临床医生具有直接的实际用途。我们使用多任务高斯过程(GP)模型评估多元时间序列建模在嘈杂、不完整、稀疏、异构和采样不均匀的临床数据(包括生理信号和临床记录)中的应用。然后,将学习到的多任务GP(MTGP)超参数用于评估和预测患者病情严重程度。我们使用从ICU患者获取的两个真实临床数据集进行了实验:第一,通过学习颅内压和平均动脉血压信号之间的相互作用来估计脑血管压力反应性,这是创伤性脑损伤患者继发性损伤的一个重要指标;第二,使用临床病程记录进行死亡率预测。在这两种情况下,MTGP都提供了更好的结果:一个MTGP模型在信号插值和预测方面比单任务GP模型提供了更好的结果(均方根误差为0.91对0.69),并且当将MTGP超参数用作额外的分类特征时,也获得了更好的结果(曲线下面积为0.812对0.788)。